當前位置: 首頁>>代碼示例>>Python>>正文


Python Normal.stddev方法代碼示例

本文整理匯總了Python中edward.models.Normal.stddev方法的典型用法代碼示例。如果您正苦於以下問題:Python Normal.stddev方法的具體用法?Python Normal.stddev怎麽用?Python Normal.stddev使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在edward.models.Normal的用法示例。


在下文中一共展示了Normal.stddev方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _test_normal_normal

# 需要導入模塊: from edward.models import Normal [as 別名]
# 或者: from edward.models.Normal import stddev [as 別名]
  def _test_normal_normal(self, Inference, default, *args, **kwargs):
    with self.test_session() as sess:
      x_data = np.array([0.0] * 50, dtype=np.float32)

      mu = Normal(loc=0.0, scale=1.0)
      x = Normal(loc=mu, scale=1.0, sample_shape=50)

      if not default:
        qmu_loc = tf.Variable(tf.random_normal([]))
        qmu_scale = tf.nn.softplus(tf.Variable(tf.random_normal([])))
        qmu = Normal(loc=qmu_loc, scale=qmu_scale)

        # analytic solution: N(loc=0.0, scale=\sqrt{1/51}=0.140)
        inference = Inference({mu: qmu}, data={x: x_data})
      else:
        inference = Inference([mu], data={x: x_data})
        qmu = inference.latent_vars[mu]
      inference.run(*args, **kwargs)

      self.assertAllClose(qmu.mean().eval(), 0, rtol=0.1, atol=0.6)
      self.assertAllClose(qmu.stddev().eval(), np.sqrt(1 / 51),
                          rtol=0.15, atol=0.5)

      variables = tf.get_collection(
          tf.GraphKeys.GLOBAL_VARIABLES, scope='optimizer')
      old_t, old_variables = sess.run([inference.t, variables])
      self.assertEqual(old_t, inference.n_iter)
      sess.run(inference.reset)
      new_t, new_variables = sess.run([inference.t, variables])
      self.assertEqual(new_t, 0)
      self.assertNotEqual(old_variables, new_variables)
開發者ID:JoyceYa,項目名稱:edward,代碼行數:33,代碼來源:klqp_test.py

示例2: test_normalnormal_run

# 需要導入模塊: from edward.models import Normal [as 別名]
# 或者: from edward.models.Normal import stddev [as 別名]
  def test_normalnormal_run(self):
    with self.test_session() as sess:
      x_data = np.array([0.0] * 50, dtype=np.float32)

      mu = Normal(loc=0.0, scale=1.0)
      x = Normal(loc=tf.ones(50) * mu, scale=1.0)

      qmu_loc = tf.Variable(tf.random_normal([]))
      qmu_scale = tf.nn.softplus(tf.Variable(tf.random_normal([])))
      qmu = Normal(loc=qmu_loc, scale=qmu_scale)

      # analytic solution: N(loc=0.0, scale=\sqrt{1/51}=0.140)
      inference = ed.KLpq({mu: qmu}, data={x: x_data})
      inference.run(n_samples=25, n_iter=100)

      self.assertAllClose(qmu.mean().eval(), 0, rtol=1e-1, atol=1e-1)
      self.assertAllClose(qmu.stddev().eval(), np.sqrt(1 / 51),
                          rtol=1e-1, atol=1e-1)
開發者ID:ekostem,項目名稱:edward,代碼行數:20,代碼來源:test_klpq.py

示例3: main

# 需要導入模塊: from edward.models import Normal [as 別名]
# 或者: from edward.models.Normal import stddev [as 別名]
def main(_):
  def ratio_estimator(data, local_vars, global_vars):
    """Takes as input a dict of data x, local variable samples z, and
    global variable samples beta; outputs real values of shape
    (x.shape[0] + z.shape[0],). In this example, there are no local
    variables.
    """
    # data[y] has shape (M,); global_vars[w] has shape (D,)
    # we concatenate w to each data point y, so input has shape (M, 1 + D)
    input = tf.concat([
        tf.reshape(data[y], [FLAGS.M, 1]),
        tf.tile(tf.reshape(global_vars[w], [1, FLAGS.D]), [FLAGS.M, 1])], 1)
    hidden = tf.layers.dense(input, 64, activation=tf.nn.relu)
    output = tf.layers.dense(hidden, 1, activation=None)
    return output

  ed.set_seed(42)

  # DATA
  w_true = np.ones(FLAGS.D) * 5.0
  X_train, y_train = build_toy_dataset(FLAGS.N, w_true)
  X_test, y_test = build_toy_dataset(FLAGS.N, w_true)
  data = generator([X_train, y_train], FLAGS.M)

  # MODEL
  X = tf.placeholder(tf.float32, [FLAGS.M, FLAGS.D])
  y_ph = tf.placeholder(tf.float32, [FLAGS.M])
  w = Normal(loc=tf.zeros(FLAGS.D), scale=tf.ones(FLAGS.D))
  y = Normal(loc=ed.dot(X, w), scale=tf.ones(FLAGS.M))

  # INFERENCE
  qw = Normal(loc=tf.get_variable("qw/loc", [FLAGS.D]) + 1.0,
              scale=tf.nn.softplus(tf.get_variable("qw/scale", [FLAGS.D])))

  inference = ed.ImplicitKLqp(
      {w: qw}, data={y: y_ph},
      discriminator=ratio_estimator, global_vars={w: qw})
  inference.initialize(n_iter=5000, n_print=100,
                       scale={y: float(FLAGS.N) / FLAGS.M})

  sess = ed.get_session()
  tf.global_variables_initializer().run()

  for _ in range(inference.n_iter):
    X_batch, y_batch = next(data)
    for _ in range(5):
      info_dict_d = inference.update(
          variables="Disc", feed_dict={X: X_batch, y_ph: y_batch})

    info_dict = inference.update(
        variables="Gen", feed_dict={X: X_batch, y_ph: y_batch})
    info_dict['loss_d'] = info_dict_d['loss_d']
    info_dict['t'] = info_dict['t'] // 6  # say set of 6 updates is 1 iteration

    t = info_dict['t']
    inference.print_progress(info_dict)
    if t == 1 or t % inference.n_print == 0:
      # Check inferred posterior parameters.
      mean, std = sess.run([qw.mean(), qw.stddev()])
      print("\nInferred mean & std:")
      print(mean)
      print(std)
開發者ID:JoyceYa,項目名稱:edward,代碼行數:64,代碼來源:bayesian_linear_regression_implicitklqp.py

示例4: Normal

# 需要導入模塊: from edward.models import Normal [as 別名]
# 或者: from edward.models.Normal import stddev [as 別名]
qw = Normal(loc=tf.Variable(tf.random_normal([D]) + 1.0),
            scale=tf.nn.softplus(tf.Variable(tf.random_normal([D]))))

inference = ed.ImplicitKLqp(
    {w: qw}, data={y: y_ph},
    discriminator=ratio_estimator, global_vars={w: qw})
inference.initialize(n_iter=5000, n_print=100, scale={y: float(N) / M})

sess = ed.get_session()
tf.global_variables_initializer().run()

for _ in range(inference.n_iter):
  X_batch, y_batch = next(data)
  for _ in range(5):
    info_dict_d = inference.update(
        variables="Disc", feed_dict={X: X_batch, y_ph: y_batch})

  info_dict = inference.update(
      variables="Gen", feed_dict={X: X_batch, y_ph: y_batch})
  info_dict['loss_d'] = info_dict_d['loss_d']
  info_dict['t'] = info_dict['t'] // 6  # say set of 6 updates is 1 iteration

  t = info_dict['t']
  inference.print_progress(info_dict)
  if t == 1 or t % inference.n_print == 0:
    # Check inferred posterior parameters.
    mean, std = sess.run([qw.mean(), qw.stddev()])
    print("\nInferred mean & std:")
    print(mean)
    print(std)
開發者ID:ekostem,項目名稱:edward,代碼行數:32,代碼來源:bayesian_linear_regression_implicitklqp.py


注:本文中的edward.models.Normal.stddev方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。