當前位置: 首頁>>代碼示例>>Python>>正文


Python imports.Machine類代碼示例

本文整理匯總了Python中dream.simulation.imports.Machine的典型用法代碼示例。如果您正苦於以下問題:Python Machine類的具體用法?Python Machine怎麽用?Python Machine使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了Machine類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: removeEntity

 def removeEntity(self, entity):
     activeEntity=Machine.removeEntity(self, entity)
     if self.state==-1:
         activeEntity.status='Bad'
     else:
         self.numGoodParts+=1
     return activeEntity
開發者ID:goodhobak,項目名稱:dream,代碼行數:7,代碼來源:OperationalFailures.py

示例2: removeEntity

 def removeEntity(self,entity=None):
     # run the default method  
     activeEntity=Machine.removeEntity(self, entity)             
     # count the number of parts in the server. 
     # If it is empty have one internal queue to signal the queue before the compound object
     if not self.countInternalParts():
         self.sendSignal(receiver=QB, signal=QB.canDispose, sender=Q1)
     return activeEntity
開發者ID:goodhobak,項目名稱:dream,代碼行數:8,代碼來源:CompoundMachine.py

示例3: getEntity

 def getEntity(self):
     activeEntity=Machine.getEntity(self)
     for queue in G.InternalQueueList:
         station=queue.next[0]
         # do not send the signal if it is already triggered
         if not queue.canDispose.triggered:
             self.sendSignal(receiver=queue, signal=queue.canDispose, sender=station)
     return activeEntity
開發者ID:goodhobak,項目名稱:dream,代碼行數:8,代碼來源:CompoundMachine.py

示例4: main

from dream.simulation.imports import Machine, Source, Exit, Part, G, Repairman, Queue, Failure 
from dream.simulation.imports import simulate, activate, initialize

#define the objects of the model
R=Repairman('R1', 'Bob')
S=Source('S1','Source', interarrivalTime={'distributionType':'Fixed','mean':0.5}, entity='Dream.Part')
M1=Machine('M1','Machine1', processingTime={'distributionType':'Fixed','mean':0.25})
Q=Queue('Q1','Queue')
M2=Machine('M2','Machine2', processingTime={'distributionType':'Fixed','mean':1.5})
E=Exit('E1','Exit')  

#create failures
F1=Failure(victim=M1, distribution={'distributionType':'Fixed','MTTF':60,'MTTR':5}, repairman=R) 
F2=Failure(victim=M2, distribution={'distributionType':'Fixed','MTTF':40,'MTTR':10}, repairman=R)

G.ObjList=[S,M1,M2,E,Q]   #add all the objects in G.ObjList so that they can be easier accessed later
G.MachineList=[M1,M2]

G.ObjectInterruptionList=[F1,F2]     #add all the objects in G.ObjList so that they can be easier accessed later

#define predecessors and successors for the objects    
S.defineRouting([M1])
M1.defineRouting([S],[Q])
Q.defineRouting([M1],[M2])
M2.defineRouting([Q],[E])
E.defineRouting([M2])

def main():
    initialize()                        #initialize the simulation (SimPy method)
    
    #initialize all the objects
開發者ID:mmariani,項目名稱:dream,代碼行數:31,代碼來源:TwoServers.py

示例5: main

from dream.simulation.imports import Machine, Source, Exit, Batch, BatchDecomposition,\
                            BatchSource, BatchReassembly, Queue, LineClearance, ExcelHandler, ExcelHandler 
from dream.simulation.Globals import runSimulation

# define the objects of the model
S=BatchSource('S','Source',interArrivalTime={'Fixed':{'mean':1.5}}, entity='Dream.Batch', batchNumberOfUnits=100)
Q=Queue('Q','StartQueue',capacity=100000)
BD=BatchDecomposition('BC', 'BatchDecomposition', numberOfSubBatches=4, processingTime={'Fixed':{'mean':1}})
M1=Machine('M1','Machine1',processingTime={'Fixed':{'mean':0.5}})
Q1=LineClearance('Q1','Queue1',capacity=2)
M2=Machine('M2','Machine2',processingTime={'Fixed':{'mean':4}})
BRA=BatchReassembly('BRA', 'BatchReassembly', numberOfSubBatches=4, processingTime={'Fixed':{'mean':0}})
M3=Machine('M3','Machine3',processingTime={'Fixed':{'mean':1}})
E=Exit('E','Exit')

# define the predecessors and successors for the objects
S.defineRouting([Q])
Q.defineRouting([S],[BD])
BD.defineRouting([Q],[M1])
M1.defineRouting([BD],[Q1])
Q1.defineRouting([M1],[M2])
M2.defineRouting([Q1],[BRA])
BRA.defineRouting([M2],[M3])
M3.defineRouting([BRA],[E])
E.defineRouting([M3])

def main(test=0):

    # add all the objects in a list
    objectList=[S,Q,BD,M1,Q1,M2,BRA,M3,E]  
    # set the length of the experiment  
開發者ID:PanosBarlas,項目名稱:dream,代碼行數:31,代碼來源:ClearBatchLines.py

示例6: getEntity

 def getEntity(self):
     activeEntity=Machine.getEntity(self)        #call the parent method to get the entity
     part=self.getActiveObjectQueue()[0]         #retrieve the obtained part
     part.machineId=self.id                      #create an attribute to the obtained part and give it the value of the object's id
     return activeEntity                         #return the entity obtained
開發者ID:mmariani,項目名稱:dream,代碼行數:5,代碼來源:ParallelServers3.py

示例7: SelectiveQueue

#the custom queue
class SelectiveQueue(Queue):
    #override so that it chooses receiver according to priority
    def selectReceiver(self,possibleReceivers=[]):
        # sort the receivers according to their priority
        possibleReceivers.sort(key=lambda x: x.priority, reverse=True)
        if possibleReceivers[0].canAccept():
            return possibleReceivers[0]
        elif possibleReceivers[1].canAccept():
            return possibleReceivers[1]
        return None
       
#define the objects of the model
S=Source('S','Source', interArrivalTime={'Fixed':{'mean':0.5}}, entity='Dream.Part')
Q=SelectiveQueue('Q','Queue', capacity=float("inf"))
M1=Machine('M1','Milling1', processingTime={'Fixed':{'mean':0.25}})
M2=Machine('M2','Milling2', processingTime={'Fixed':{'mean':0.25}})
E=Exit('E1','Exit')  
F=Failure(victim=M1, distribution={'TTF':{'Fixed':{'mean':60.0}},'TTR':{'Fixed':{'mean':5.0}}})

#create priority attribute in the Machines
M1.priority=10
M2.priority=0

#define predecessors and successors for the objects    
S.defineRouting([Q])
Q.defineRouting([S],[M1,M2])
M1.defineRouting([Q],[E])
M2.defineRouting([Q],[E])
E.defineRouting([M1,M2])
開發者ID:PanosBarlas,項目名稱:dream,代碼行數:30,代碼來源:ParallelServers3.py

示例8: haveToDispose

 def haveToDispose(self, callerObject=None):
     for object in G.InternalProcessList:
         # if there is one other machine processing return False
         if object.isProcessing:
             return False
     return Machine.haveToDispose(self, callerObject)  
開發者ID:goodhobak,項目名稱:dream,代碼行數:6,代碼來源:CompoundMachine.py

示例9: initialize

 def initialize(self):
     Machine.initialize(self)
     self.numGoodParts=0
     self.state=1
開發者ID:goodhobak,項目名稱:dream,代碼行數:4,代碼來源:OperationalFailures.py

示例10: canAccept

 def canAccept(self, callerObject=None):
     # do not start processing unless there are enough parts 
     # (i.e. equal to the number of processes) in the compound machine
     if not self.countInternalParts()==len(G.InternalProcessList):
         return False
     return Machine.canAccept(self, callerObject)  
開發者ID:goodhobak,項目名稱:dream,代碼行數:6,代碼來源:CompoundMachine.py

示例11: main

from dream.simulation.imports import Machine, Source, Exit, Part, Frame, Assembly, Failure
from dream.simulation.Globals import runSimulation

#define the objects of the model
Frame.capacity=4 
Sp=Source('SP','Parts', interArrivalTime={'Fixed':{'mean':0.5}}, entity='Dream.Part')
Sf=Source('SF','Frames', interArrivalTime={'Fixed':{'mean':2}}, entity='Dream.Frame')
M=Machine('M','Machine', processingTime={'Fixed':{'mean':0.25}})
A=Assembly('A','Assembly', processingTime={'Fixed':{'mean':2}})
E=Exit('E1','Exit')  

F=Failure(victim=M, distribution={'TTF':{'Fixed':{'mean':60.0}},'TTR':{'Fixed':{'mean':5.0}}})

#define predecessors and successors for the objects    
Sp.defineRouting([A])
Sf.defineRouting([A])
A.defineRouting([Sp,Sf],[M])
M.defineRouting([A],[E])
E.defineRouting([M])

def main(test=0):
    # add all the objects in a list
    objectList=[Sp,Sf,M,A,E,F]  
    # set the length of the experiment  
    maxSimTime=1440.0
    # call the runSimulation giving the objects and the length of the experiment
    runSimulation(objectList, maxSimTime)

    # calculate metrics
    working_ratio=(A.totalWorkingTime/maxSimTime)*100
    
開發者ID:PanosBarlas,項目名稱:dream,代碼行數:30,代碼來源:AssemblyLine.py

示例12: main

from dream.simulation.imports import Machine, Source, Exit, Part, Queue, NonStarvingEntry
from dream.simulation.Globals import runSimulation

#define the objects of the model
NS=NonStarvingEntry('NS1','Entry',entityData={'_class':'Dream.Part'})
M1=Machine('M1','Machine1', processingTime={'Exp':{'mean':1}})
Q2=Queue('Q2','Queue2')
M2=Machine('M2','Machine2', processingTime={'Exp':{'mean':3}})
Q3=Queue('Q3','Queue3')
M3=Machine('M3','Machine3', processingTime={'Exp':{'mean':5}})
E=Exit('E1','Exit')  


#define predecessors and successors for the objects    
NS.defineRouting(successorList=[M1])
M1.defineRouting(predecessorList=[NS],successorList=[Q2])
Q2.defineRouting(predecessorList=[M1],successorList=[M2])
M2.defineRouting(predecessorList=[Q2],successorList=[Q3])
Q3.defineRouting(predecessorList=[M2],successorList=[M3])
M3.defineRouting(predecessorList=[Q3],successorList=[E])
E.defineRouting(predecessorList=[M3])

def main(test=0):
    # add all the objects in a list
    objectList=[NS,M1,M2,M3,Q2,Q3,E]  
    # set the length of the experiment  
    maxSimTime=480
    
    solutionList=[]
    
    for i in range(1,10):
開發者ID:goodhobak,項目名稱:dream,代碼行數:31,代碼來源:BufferAllocation.py

示例13: machine

from dream.simulation.imports import Source, Queue, Machine, Exit
from dream.simulation.Globals import runSimulation

# This is the baby step to building a complicated model of the behavior
# of a fleet of systems with multiple stakeholders.
# The baby step includes:
#     A source to generate students
#     A Queue for students to wait for a flight
#     A machine (aircraft) to give students time
#     An exit for graduated students

# The source is API for Aviation Preflight Indocrination
API = Source('API', 'Source', interArrivalTime={'Fixed': {'mean': 0.5}},
             entity='Dream.Part')
RR = Queue('ReadyRoom', 'Queue', capacity=1)
AC = Machine('AC1', 'Machine', processingTime={'Fixed': {'mean': 0.25}})
E = Exit('The Fleet', 'The Fleet')

# The predecessors and successors for the objects
API.defineRouting(successorList=[RR])
RR.defineRouting(predecessorList=[API], successorList=[AC])
AC.defineRouting(predecessorList=[RR], successorList=[E])
E.defineRouting(predecessorList=[AC])

def main(test=0):
    # add all the objects in a list
    objectList=[API, RR, AC, E]
    # set the length of the experiment
    maxSimTime = 1440.0
    # call the runSimulation giving the objects and the length of the
    # experiment
開發者ID:royemanuel,項目名稱:Metrics,代碼行數:31,代碼來源:fleetManpy.py

示例14: main

from dream.simulation.imports import Machine, BatchSource, Exit, Batch, BatchDecomposition, Queue, G 
from dream.simulation.imports import simulate, activate, initialize

# define the objects of the model
S=BatchSource('S','Source',interarrivalTime={'distributionType':'Fixed','mean':0.5}, entity='Dream.Batch', batchNumberOfUnits=4)
Q=Queue('Q','StartQueue',capacity=100000)
BD=BatchDecomposition('BC', 'BatchDecomposition', numberOfSubBatches=4, processingTime={'distributionType':'Fixed','mean':1})
M=Machine('M','Machine',processingTime={'distributionType':'Fixed','mean':0.5})
E=Exit('E','Exit')
# add all the objects in the G.ObjList so that they can be easier accessed later
G.ObjList=[S,Q,BD,M,E]
# define the predecessors and successors for the objects
S.defineRouting([Q])
Q.defineRouting([S],[BD])
BD.defineRouting([Q],[M])
M.defineRouting([BD],[E])
E.defineRouting([M])

def main():
    # initialize the simulation (SimPy method)
    initialize()
    # initialize all the objects
    for object in G.ObjList:
        object.initialize()
    # activate all the objects
    for object in G.ObjList:
        activate(object,object.run())
    # set G.maxSimTime 1440.0 minutes (1 day)
    G.maxSimTime=1440.0
    # run the simulation
    simulate(until=G.maxSimTime)
開發者ID:mmariani,項目名稱:dream,代碼行數:31,代碼來源:DecompositionOfBatches.py

示例15: postProcessing

 def postProcessing(self):
     Machine.postProcessing(self, MaxSimtime=maxSimTime)
     self.GoodExits.append(self.numGoodParts)
開發者ID:goodhobak,項目名稱:dream,代碼行數:3,代碼來源:OperationalFailures.py


注:本文中的dream.simulation.imports.Machine類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。