當前位置: 首頁>>代碼示例>>Python>>正文


Python Logger.add方法代碼示例

本文整理匯總了Python中core.logger.Logger.add方法的典型用法代碼示例。如果您正苦於以下問題:Python Logger.add方法的具體用法?Python Logger.add怎麽用?Python Logger.add使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在core.logger.Logger的用法示例。


在下文中一共展示了Logger.add方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: enumerate

# 需要導入模塊: from core.logger import Logger [as 別名]
# 或者: from core.logger.Logger import add [as 別名]
        accs.append(metrics.logit2acc(log_outputs.data, labels))
        training_loss += loss.cpu().data.numpy()[0]

    # ELBO evaluation
    net.train()
    training_loss = 0
    steps = 0
    accs = []
    for i, (inputs, labels) in enumerate(trainloader, 0):
        steps += 1
        inputs, labels = Variable(inputs.cuda(async=True)), Variable(labels.cuda(async=True))
        for j in range(10):
            outputs = net(inputs).detach()
            training_loss += criterion(outputs, labels).cpu().data.numpy()[0]/10.0
        accs.append(metrics.logit2acc(outputs.data, labels))
    logger.add(epoch, kl=criterion.get_kl(), tr_loss=training_loss/steps, tr_acc=np.mean(accs))

    # zero-mean ELBO evaluation
    net.train()
    net.set_flag('zero_mean', True)
    training_loss = 0
    steps = 0
    accs = []
    for i, (inputs, labels) in enumerate(trainloader, 0):
        steps += 1
        inputs, labels = Variable(inputs.cuda(async=True)), Variable(labels.cuda(async=True))
        for j in range(10):
            outputs = net(inputs).detach()
            training_loss += criterion(net(inputs), labels).cpu().data.numpy()[0] / 10.0
        accs.append(metrics.logit2acc(outputs.data, labels))
    logger.add(epoch, zero_mean_tr_loss=training_loss / steps, zero_mean_tr_acc=np.mean(accs))
開發者ID:AlliedToasters,項目名稱:elko_den,代碼行數:33,代碼來源:lenet5-vdo.py

示例2: enumerate

# 需要導入模塊: from core.logger import Logger [as 別名]
# 或者: from core.logger.Logger import add [as 別名]
    accs = []
    steps = 0
    for i, (inputs, labels) in enumerate(trainloader, 0):
        steps += 1
        inputs, labels = Variable(inputs.cuda(async=True)), Variable(labels.cuda(async=True))

        optimizer.zero_grad()
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        accs.append(metrics.logit2acc(outputs.data, labels))  # probably a bad way to calculate accuracy
        training_loss += loss.cpu().data.numpy()[0]

    logger.add(epoch, tr_loss=training_loss/steps, tr_acc=np.mean(accs))

    # Deterministic test
    net.eval()
    acc, nll = utils.evaluate(net, testloader, num_ens=1)
    logger.add(epoch, te_nll_det=nll, te_acc_det=acc)

    # Stochastic test
    net.train()
    acc, nll = utils.evaluate(net, testloader, num_ens=1)
    logger.add(epoch, te_nll_stoch=nll, te_acc_stoch=acc)

    # Test-time averaging
    net.train()
    acc, nll = utils.evaluate(net, testloader, num_ens=20)
    logger.add(epoch, te_nll_ens=nll, te_acc_ens=acc)
開發者ID:AlliedToasters,項目名稱:elko_den,代碼行數:33,代碼來源:lenet5-vanilla.py


注:本文中的core.logger.Logger.add方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。