當前位置: 首頁>>代碼示例>>Python>>正文


Python FullyConnectedLayer.reshape方法代碼示例

本文整理匯總了Python中cle.cle.layers.feedforward.FullyConnectedLayer.reshape方法的典型用法代碼示例。如果您正苦於以下問題:Python FullyConnectedLayer.reshape方法的具體用法?Python FullyConnectedLayer.reshape怎麽用?Python FullyConnectedLayer.reshape使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在cle.cle.layers.feedforward.FullyConnectedLayer的用法示例。


在下文中一共展示了FullyConnectedLayer.reshape方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: concatenate

# 需要導入模塊: from cle.cle.layers.feedforward import FullyConnectedLayer [as 別名]
# 或者: from cle.cle.layers.feedforward.FullyConnectedLayer import reshape [as 別名]
    k.default_update = v

shared_updates[rnn_tm1] = s_temp[-1]
s_temp = concatenate([s_0[None, :, :], s_temp[:-1]], axis=0)
theta_1_temp = theta_1.fprop([s_temp], params)
theta_2_temp = theta_2.fprop([theta_1_temp], params)
theta_3_temp = theta_3.fprop([theta_2_temp], params)
theta_4_temp = theta_4.fprop([theta_3_temp], params)
theta_mu_temp = theta_mu.fprop([theta_4_temp], params)
theta_sig_temp = theta_sig.fprop([theta_4_temp], params)
coeff_temp = coeff.fprop([theta_4_temp])

x_in = x.reshape((x.shape[0]*x.shape[1], -1))
theta_mu_in = theta_mu_temp.reshape((x.shape[0]*x.shape[1], -1))
theta_sig_in = theta_sig_temp.reshape((x.shape[0]*x.shape[1], -1))
coeff_in = coeff.reshape((x.shape[0]*x.shape[1], -1))

recon = GMM(x_temp, theta_mu_temp, theta_sig_temp, coeff_temp)
#recon = GMM(x_in, theta_mu_in, theta_sig_in, coeff_in)
recon = recon.reshape((x_shape[0], x_shape[1]))
recon_term = recon.mean()
recon_term.name = 'nll'

m_s_0 = rnn.get_init_state(m_batch_size)

(m_s_temp, m_updates) = theano.scan(fn=inner_fn,
                                    sequences=[x_4_temp],
                                    outputs_info=[m_s_0])

for k, v in m_updates.iteritems():
    k.default_update = v
開發者ID:LEONOB2014,項目名稱:nips2015_vrnn,代碼行數:33,代碼來源:rnn_gmm.py


注:本文中的cle.cle.layers.feedforward.FullyConnectedLayer.reshape方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。