本文整理匯總了Python中cle.cle.layers.feedforward.FullyConnectedLayer.fprop方法的典型用法代碼示例。如果您正苦於以下問題:Python FullyConnectedLayer.fprop方法的具體用法?Python FullyConnectedLayer.fprop怎麽用?Python FullyConnectedLayer.fprop使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類cle.cle.layers.feedforward.FullyConnectedLayer
的用法示例。
在下文中一共展示了FullyConnectedLayer.fprop方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: from cle.cle.layers.feedforward import FullyConnectedLayer [as 別名]
# 或者: from cle.cle.layers.feedforward.FullyConnectedLayer import fprop [as 別名]
#.........這裏部分代碼省略.........
unit='softplus',
cons=1e-4,
init_W=init_W,
init_b=init_b_sig)
corr = FullyConnectedLayer(name='corr',
parent=['theta_1'],
parent_dim=[s2x_dim],
nout=1,
unit='tanh',
init_W=init_W,
init_b=init_b)
binary = FullyConnectedLayer(name='binary',
parent=['theta_1'],
parent_dim=[s2x_dim],
nout=1,
unit='sigmoid',
init_W=init_W,
init_b=init_b)
nodes = [rnn, x_1, theta_1, theta_mu, theta_sig, corr, binary]
params = OrderedDict()
for node in nodes:
if node.initialize() is not None:
params.update(node.initialize())
params = init_tparams(params)
s_0 = rnn.get_init_state(batch_size)
x_1_temp = x_1.fprop([x], params)
def inner_fn(x_t, s_tm1):
s_t = rnn.fprop([[x_t], [s_tm1]], params)
return s_t
((s_temp), updates) = theano.scan(fn=inner_fn,
sequences=[x_1_temp],
outputs_info=[s_0])
for k, v in updates.iteritems():
k.default_update = v
s_temp = concatenate([s_0[None, :, :], s_temp[:-1]], axis=0)
theta_1_temp = theta_1.fprop([s_temp], params)
theta_mu_temp = theta_mu.fprop([theta_1_temp], params)
theta_sig_temp = theta_sig.fprop([theta_1_temp], params)
corr_temp = corr.fprop([theta_1_temp], params)
binary_temp = binary.fprop([theta_1_temp], params)
x_shape = x.shape
x_in = x.reshape((x_shape[0]*x_shape[1], -1))
theta_mu_in = theta_mu_temp.reshape((x_shape[0]*x_shape[1], -1))
theta_sig_in = theta_sig_temp.reshape((x_shape[0]*x_shape[1], -1))
corr_in = corr_temp.reshape((x_shape[0]*x_shape[1], -1))
binary_in = binary_temp.reshape((x_shape[0]*x_shape[1], -1))
recon = BiGauss(x_in, theta_mu_in, theta_sig_in, corr_in, binary_in)
recon = recon.reshape((x_shape[0], x_shape[1]))
recon = recon * mask
示例2: main
# 需要導入模塊: from cle.cle.layers.feedforward import FullyConnectedLayer [as 別名]
# 或者: from cle.cle.layers.feedforward.FullyConnectedLayer import fprop [as 別名]
#.........這裏部分代碼省略.........
coeff = FullyConnectedLayer(name='coeff',
parent=['theta_4'],
parent_dim=[p_x_dim],
nout=k,
unit='softmax',
init_W=init_W,
init_b=init_b)
nodes = [rnn,
x_1, x_2, x_3, x_4,
z_1, z_2, z_3, z_4,
phi_1, phi_2, phi_3, phi_4, phi_mu, phi_sig,
prior_1, prior_2, prior_3, prior_4, prior_mu, prior_sig,
theta_1, theta_2, theta_3, theta_4, theta_mu, theta_sig, coeff]
params = OrderedDict()
for node in nodes:
if node.initialize() is not None:
params.update(node.initialize())
params = init_tparams(params)
step_count = sharedX(0, name='step_count')
last_rnn = np.zeros((batch_size, rnn_dim*2), dtype=theano.config.floatX)
rnn_tm1 = sharedX(last_rnn, name='rnn_tm1')
shared_updates = OrderedDict()
shared_updates[step_count] = step_count + 1
s_0 = T.switch(T.eq(T.mod(step_count, reset_freq), 0),
rnn.get_init_state(batch_size), rnn_tm1)
x_shape = x.shape
x_in = x.reshape((x_shape[0]*x_shape[1], -1))
x_1_in = x_1.fprop([x_in], params)
x_2_in = x_2.fprop([x_1_in], params)
x_3_in = x_3.fprop([x_2_in], params)
x_4_in = x_4.fprop([x_3_in], params)
x_4_in = x_4_in.reshape((x_shape[0], x_shape[1], -1))
def inner_fn(x_t, s_tm1):
phi_1_t = phi_1.fprop([x_t, s_tm1], params)
phi_2_t = phi_2.fprop([phi_1_t], params)
phi_3_t = phi_3.fprop([phi_2_t], params)
phi_4_t = phi_4.fprop([phi_3_t], params)
phi_mu_t = phi_mu.fprop([phi_4_t], params)
phi_sig_t = phi_sig.fprop([phi_4_t], params)
prior_1_t = prior_1.fprop([s_tm1], params)
prior_2_t = prior_2.fprop([prior_1_t], params)
prior_3_t = prior_3.fprop([prior_2_t], params)
prior_4_t = prior_4.fprop([prior_3_t], params)
prior_mu_t = prior_mu.fprop([prior_4_t], params)
prior_sig_t = prior_sig.fprop([prior_4_t], params)
z_t = Gaussian_sample(phi_mu_t, phi_sig_t)
z_1_t = z_1.fprop([z_t], params)
z_2_t = z_2.fprop([z_1_t], params)
z_3_t = z_3.fprop([z_2_t], params)
z_4_t = z_4.fprop([z_3_t], params)
s_t = rnn.fprop([[x_t, z_4_t], [s_tm1]], params)
return s_t, phi_mu_t, phi_sig_t, prior_mu_t, prior_sig_t, z_4_t
示例3: flatten
# 需要導入模塊: from cle.cle.layers.feedforward import FullyConnectedLayer [as 別名]
# 或者: from cle.cle.layers.feedforward.FullyConnectedLayer import fprop [as 別名]
params = flatten([node.get_params().values() for node in nodes])
step_count = sharedX(0, name='step_count')
last_main_lstm = np.zeros((batch_size, main_lstm_dim*2), dtype=theano.config.floatX)
main_lstm_tm1 = sharedX(last_main_lstm, name='main_lstm_tm1')
update_list = [step_count, main_lstm_tm1]
step_count = T.switch(T.le(step_count, reset_freq), step_count + 1, 0)
s_0 = T.switch(T.or_(T.cast(T.eq(step_count, 0), 'int32'),
T.cast(T.eq(T.sum(main_lstm_tm1), 0.), 'int32')),
main_lstm.get_init_state(batch_size), main_lstm_tm1)
x_shape = x.shape
x_in = x.reshape((x_shape[0]*x_shape[1], -1))
x_1_in = x_1.fprop([x_in])
x_2_in = x_2.fprop([x_1_in])
x_3_in = x_3.fprop([x_2_in])
x_4_in = x_4.fprop([x_3_in])
x_4_in = x_4_in.reshape((x_shape[0], x_shape[1], -1))
def inner_fn(x_t, s_tm1):
phi_1_t = phi_1.fprop([x_t, s_tm1])
phi_2_t = phi_2.fprop([phi_1_t])
phi_3_t = phi_3.fprop([phi_2_t])
phi_4_t = phi_4.fprop([phi_3_t])
phi_mu_t = phi_mu.fprop([phi_4_t])
phi_sig_t = phi_sig.fprop([phi_4_t])
示例4: main
# 需要導入模塊: from cle.cle.layers.feedforward import FullyConnectedLayer [as 別名]
# 或者: from cle.cle.layers.feedforward.FullyConnectedLayer import fprop [as 別名]
#.........這裏部分代碼省略.........
)
binary = FullyConnectedLayer(
name="binary", parent=["theta_1"], parent_dim=[p_x_dim], nout=1, unit="sigmoid", init_W=init_W, init_b=init_b
)
nodes = [
rnn,
x_1,
z_1,
phi_1,
phi_mu,
phi_sig,
prior_1,
prior_mu,
prior_sig,
theta_1,
theta_mu,
theta_sig,
corr,
binary,
]
params = OrderedDict()
for node in nodes:
if node.initialize() is not None:
params.update(node.initialize())
params = init_tparams(params)
s_0 = rnn.get_init_state(batch_size)
x_1_temp = x_1.fprop([x], params)
def inner_fn(x_t, s_tm1):
phi_1_t = phi_1.fprop([x_t, s_tm1], params)
phi_mu_t = phi_mu.fprop([phi_1_t], params)
phi_sig_t = phi_sig.fprop([phi_1_t], params)
prior_1_t = prior_1.fprop([s_tm1], params)
prior_mu_t = prior_mu.fprop([prior_1_t], params)
prior_sig_t = prior_sig.fprop([prior_1_t], params)
z_t = Gaussian_sample(phi_mu_t, phi_sig_t)
z_1_t = z_1.fprop([z_t], params)
s_t = rnn.fprop([[x_t, z_1_t], [s_tm1]], params)
return s_t, phi_mu_t, phi_sig_t, prior_mu_t, prior_sig_t, z_1_t
((s_temp, phi_mu_temp, phi_sig_temp, prior_mu_temp, prior_sig_temp, z_1_temp), updates) = theano.scan(
fn=inner_fn, sequences=[x_1_temp], outputs_info=[s_0, None, None, None, None, None]
)
for k, v in updates.iteritems():
k.default_update = v
s_temp = concatenate([s_0[None, :, :], s_temp[:-1]], axis=0)
theta_1_temp = theta_1.fprop([z_1_temp, s_temp], params)
theta_mu_temp = theta_mu.fprop([theta_1_temp], params)
theta_sig_temp = theta_sig.fprop([theta_1_temp], params)
corr_temp = corr.fprop([theta_1_temp], params)
binary_temp = binary.fprop([theta_1_temp], params)
示例5: flatten
# 需要導入模塊: from cle.cle.layers.feedforward import FullyConnectedLayer [as 別名]
# 或者: from cle.cle.layers.feedforward.FullyConnectedLayer import fprop [as 別名]
init_W=init_W,
init_b=init_b)
# You will fill in a list of nodes
nodes = [h1, h2, d1, d2, output]
# Initalize the nodes
for node in nodes:
node.initialize()
# Collect parameters
params = flatten([node.get_params().values() for node in nodes])
# Build the Theano computational graph
h1_out = h1.fprop([x])
d1_out = d1.fprop([h1_out])
h2_out = h2.fprop([d1_out])
d2_out = d2.fprop([h2_out])
y_hat = output.fprop([d2_out])
# Compute the cost
cost = NllMulInd(y, y_hat).mean()
err = error(predict(y_hat), y)
cost.name = 'cross_entropy'
err.name = 'error_rate'
d1.set_mode(1)
d2.set_mode(1)
mn_h1_out = h1.fprop([mn_x])
mn_h2_out = h2.fprop([mn_h1_out])
示例6: init_tparams
# 需要導入模塊: from cle.cle.layers.feedforward import FullyConnectedLayer [as 別名]
# 或者: from cle.cle.layers.feedforward.FullyConnectedLayer import fprop [as 別名]
if node.initialize() is not None:
params.update(node.initialize())
params = init_tparams(params)
step_count = sharedX(0, name='step_count')
last_rnn = np.zeros((batch_size, rnn_dim*2), dtype=theano.config.floatX)
rnn_tm1 = sharedX(last_rnn, name='rnn_tm1')
shared_updates = OrderedDict()
shared_updates[step_count] = step_count + 1
s_0 = T.switch(T.eq(T.mod(step_count, reset_freq), 0),
rnn.get_init_state(batch_size), rnn_tm1)
x_shape = x.shape
x_in = x.reshape((x_shape[0]*x_shape[1], -1))
x_1_in = x_1.fprop([x_in], params)
x_2_in = x_2.fprop([x_1_in], params)
x_3_in = x_3.fprop([x_2_in], params)
x_4_in = x_4.fprop([x_3_in], params)
x_4_in = x_4_in.reshape((x_shape[0], x_shape[1], -1))
def inner_fn(x_t, s_tm1):
phi_1_t = phi_1.fprop([x_t, s_tm1], params)
phi_2_t = phi_2.fprop([phi_1_t], params)
phi_3_t = phi_3.fprop([phi_2_t], params)
phi_4_t = phi_4.fprop([phi_3_t], params)
phi_mu_t = phi_mu.fprop([phi_4_t], params)
phi_sig_t = phi_sig.fprop([phi_4_t], params)
示例7: Gaussian
# 需要導入模塊: from cle.cle.layers.feedforward import FullyConnectedLayer [as 別名]
# 或者: from cle.cle.layers.feedforward.FullyConnectedLayer import fprop [as 別名]
return enc_t, dec_t, phi_mu_t, phi_sig_t
((enc_t, dec_t, phi_mu_t, phi_sig_t), updates) =\
theano.scan(fn=inner_fn,
sequences=[x, x_tm1],
outputs_info=[enc_0, dec_0, None, None])
for k, v in updates.iteritems():
k.default_update = v
encoder_tm1 = enc_t[-1]
decoder_tm1 = dec_t[-1]
dec_shape = dec_t.shape
dec_in = dec_t.reshape((dec_shape[0]*dec_shape[1], -1))
theta_mu_in = theta_mu.fprop([dec_in])
theta_sig_in = theta_sig.fprop([dec_in])
z_shape = phi_mu_t.shape
phi_mu_in = phi_mu_t.reshape((z_shape[0]*z_shape[1], -1))
phi_sig_in = phi_sig_t.reshape((z_shape[0]*z_shape[1], -1))
kl_in = kl.fprop([phi_mu_in, phi_sig_in])
kl_t = kl_in.reshape((z_shape[0], z_shape[1]))
recon = Gaussian(x_in, theta_mu_in, theta_sig_in)
recon = recon.reshape((x_shape[0], x_shape[1]))
recon_term = recon.mean()
kl_term = kl_t.mean()
nll_lower_bound = recon_term + kl_term
nll_lower_bound.name = 'nll_lower_bound'
recon_term.name = 'recon_term'
示例8: inner_fn
# 需要導入模塊: from cle.cle.layers.feedforward import FullyConnectedLayer [as 別名]
# 或者: from cle.cle.layers.feedforward.FullyConnectedLayer import fprop [as 別名]
update_list = [step_count, lstm_1_tm1, lstm_2_tm1, lstm_3_tm1]
step_count = T.switch(T.le(step_count, reset_freq), step_count + 1, 0)
s_1_0 = T.switch(T.or_(T.cast(T.eq(step_count, 0), 'int32'),
T.cast(T.eq(T.sum(lstm_1_tm1), 0.), 'int32')),
lstm_1.get_init_state(batch_size), lstm_1_tm1)
s_2_0 = T.switch(T.or_(T.cast(T.eq(step_count, 0), 'int32'),
T.cast(T.eq(T.sum(lstm_2_tm1), 0.), 'int32')),
lstm_2.get_init_state(batch_size), lstm_2_tm1)
s_3_0 = T.switch(T.or_(T.cast(T.eq(step_count, 0), 'int32'),
T.cast(T.eq(T.sum(lstm_3_tm1), 0.), 'int32')),
lstm_3.get_init_state(batch_size), lstm_3_tm1)
x_shape = x.shape
x_in = x.reshape((x_shape[0]*x_shape[1], -1))
x_1_in = x_1.fprop([x_in])
x_2_in = x_2.fprop([x_1_in])
x_3_in = x_3.fprop([x_2_in])
x_4_in = x_4.fprop([x_3_in])
x_5_in = x_5.fprop([x_4_in])
x_6_in = x_6.fprop([x_5_in])
x_6_in = x_6_in.reshape((x_shape[0], x_shape[1], -1))
def inner_fn(x_t, s_tm1):
phi_1_t = phi_1.fprop([x_t, s_3_tm1])
phi_2_t = phi_2.fprop([phi_1_t])
phi_3_t = phi_3.fprop([phi_2_t])
phi_4_t = phi_4.fprop([phi_3_t])
phi_mu_t = phi_mu.fprop([phi_4_t])
示例9: flatten
# 需要導入模塊: from cle.cle.layers.feedforward import FullyConnectedLayer [as 別名]
# 或者: from cle.cle.layers.feedforward.FullyConnectedLayer import fprop [as 別名]
theta_4,
theta_mu,
theta_sig,
]
for node in nodes:
node.initialize()
params = flatten([node.get_params().values() for node in nodes])
enc_0 = encoder.get_init_state(batch_size)
dec_0 = decoder.get_init_state(batch_size)
x_shape = x.shape
x_in = x.reshape((x_shape[0] * x_shape[1], -1))
x_1_in = x_1.fprop([x_in])
x_2_in = x_2.fprop([x_1_in])
x_3_in = x_3.fprop([x_2_in])
x_4_in = x_4.fprop([x_3_in])
x_4_in = x_4_in.reshape((x_shape[0], x_shape[1], -1))
x_tm1_shape = x_tm1.shape
x_in_tm1 = x_tm1.reshape((x_tm1_shape[0] * x_tm1_shape[1], -1))
x_1_in_tm1 = x_1.fprop([x_in_tm1])
x_2_in_tm1 = x_2.fprop([x_1_in_tm1])
x_3_in_tm1 = x_3.fprop([x_2_in_tm1])
x_4_in_tm1 = x_4.fprop([x_3_in_tm1])
x_4_in_tm1 = x_4_in_tm1.reshape((x_shape[0], x_shape[1], -1))
def inner_fn(x_t, x_tm1, enc_tm1, dec_tm1):
示例10: OrderedDict
# 需要導入模塊: from cle.cle.layers.feedforward import FullyConnectedLayer [as 別名]
# 或者: from cle.cle.layers.feedforward.FullyConnectedLayer import fprop [as 別名]
init_b=init_b)
# You will fill in a list of nodes
nodes = [h1, output]
# Initalize the nodes
params = OrderedDict()
for node in nodes:
params.update(node.initialize())
params = init_tparams(params)
nparams = add_noise_params(params, std_dev=std_dev)
# Build the Theano computational graph
d_x = inp_scale * dropout(x, p=inp_p)
h1_out = h1.fprop([d_x], nparams)
d1_out = int_scale * dropout(h1_out, p=int_p)
y_hat = output.fprop([d1_out], nparams)
# Compute the cost
cost = NllMulInd(y, y_hat).mean()
err = error(predict(y_hat), y)
cost.name = 'cross_entropy'
err.name = 'error_rate'
# Seperate computational graph to compute monitoring values without
# considering the noising processes
m_h1_out = h1.fprop([x], params)
m_y_hat = output.fprop([m_h1_out], params)
m_cost = NllMulInd(y, m_y_hat).mean()
示例11: flatten
# 需要導入模塊: from cle.cle.layers.feedforward import FullyConnectedLayer [as 別名]
# 或者: from cle.cle.layers.feedforward.FullyConnectedLayer import fprop [as 別名]
unit='linear',
init_W=init_W,
init_b=init_b)
nodes = [x_1, theta_mu]
for node in nodes:
node.initialize()
params = flatten([node.get_params().values() for node in nodes])
x_shape = x.shape
x_in = x.reshape((x_shape[0]*x_shape[1], -1))
x_1_in = x_1.fprop([x_in])
theta_mu_in = theta_mu.fprop([x_1_in])
recon = 0.5*(x_in-theta_mu_in)**2
recon_term = recon.mean()
# TODO: what should be the reconstructed signal? theta_mu or sample?
spec_recon = spectral_magnitude_log_distance_error(x_in, theta_mu_in)
spec_recon_term = spec_recon.mean()
spec_recon_term.name = 'spec_recon_term'
cost = recon_term + spec_recon_term
recon_term.name = 'recon_term'
cost.name = 'cost'
"""
示例12: OrderedDict
# 需要導入模塊: from cle.cle.layers.feedforward import FullyConnectedLayer [as 別名]
# 或者: from cle.cle.layers.feedforward.FullyConnectedLayer import fprop [as 別名]
params = OrderedDict()
for node in nodes:
if node.initialize() is not None:
params.update(node.initialize())
params = init_tparams(params)
step_count = sharedX(0, name='step_count')
last_rnn = np.zeros((batch_size, rnn_dim*2), dtype=theano.config.floatX)
rnn_tm1 = sharedX(last_rnn, name='rnn_tm1')
shared_updates = OrderedDict()
shared_updates[step_count] = step_count + 1
s_0 = T.switch(T.eq(T.mod(step_count, reset_freq), 0),
rnn.get_init_state(batch_size), rnn_tm1)
x_1_temp = x_1.fprop([x], params)
x_2_temp = x_2.fprop([x_1_temp], params)
x_3_temp = x_3.fprop([x_2_temp], params)
x_4_temp = x_4.fprop([x_3_temp], params)
def inner_fn(x_t, s_tm1):
s_t = rnn.fprop([[x_t], [s_tm1]], params)
return s_t
(s_temp, updates) = theano.scan(fn=inner_fn,
sequences=[x_4_temp],
outputs_info=[s_0])
示例13: main
# 需要導入模塊: from cle.cle.layers.feedforward import FullyConnectedLayer [as 別名]
# 或者: from cle.cle.layers.feedforward.FullyConnectedLayer import fprop [as 別名]
#.........這裏部分代碼省略.........
phi_4,
phi_mu,
phi_sig,
prior_1,
prior_2,
prior_3,
prior_4,
prior_mu,
prior_sig,
theta_1,
theta_2,
theta_3,
theta_4,
theta_mu,
theta_sig,
]
params = OrderedDict()
for node in nodes:
if node.initialize() is not None:
params.update(node.initialize())
params = init_tparams(params)
step_count = sharedX(0, name="step_count")
last_rnn = np.zeros((batch_size, rnn_dim * 2), dtype=theano.config.floatX)
rnn_tm1 = sharedX(last_rnn, name="rnn_tm1")
shared_updates = OrderedDict()
shared_updates[step_count] = step_count + 1
s_0 = T.switch(T.eq(T.mod(step_count, reset_freq), 0), rnn.get_init_state(batch_size), rnn_tm1)
x_1_temp = x_1.fprop([x], params)
x_2_temp = x_2.fprop([x_1_temp], params)
x_3_temp = x_3.fprop([x_2_temp], params)
x_4_temp = x_4.fprop([x_3_temp], params)
def inner_fn(x_t, s_tm1):
phi_1_t = phi_1.fprop([x_t, s_tm1], params)
phi_2_t = phi_2.fprop([phi_1_t], params)
phi_3_t = phi_3.fprop([phi_2_t], params)
phi_4_t = phi_4.fprop([phi_3_t], params)
phi_mu_t = phi_mu.fprop([phi_4_t], params)
phi_sig_t = phi_sig.fprop([phi_4_t], params)
prior_1_t = prior_1.fprop([s_tm1], params)
prior_2_t = prior_2.fprop([prior_1_t], params)
prior_3_t = prior_3.fprop([prior_2_t], params)
prior_4_t = prior_4.fprop([prior_3_t], params)
prior_mu_t = prior_mu.fprop([prior_4_t], params)
prior_sig_t = prior_sig.fprop([prior_4_t], params)
z_t = Gaussian_sample(phi_mu_t, phi_sig_t)
z_1_t = z_1.fprop([z_t], params)
z_2_t = z_2.fprop([z_1_t], params)
z_3_t = z_3.fprop([z_2_t], params)
z_4_t = z_4.fprop([z_3_t], params)
s_t = rnn.fprop([[x_t, z_4_t], [s_tm1]], params)
return s_t, phi_mu_t, phi_sig_t, prior_mu_t, prior_sig_t, z_4_t, z_t
((s_temp, phi_mu_temp, phi_sig_temp, prior_mu_temp, prior_sig_temp, z_4_temp, z_t), updates) = theano.scan(
示例14: OrderedDict
# 需要導入模塊: from cle.cle.layers.feedforward import FullyConnectedLayer [as 別名]
# 或者: from cle.cle.layers.feedforward.FullyConnectedLayer import fprop [as 別名]
params = OrderedDict()
for node in nodes:
if node.initialize() is not None:
params.update(node.initialize())
params = init_tparams(params)
step_count = sharedX(0, name='step_count')
last_rnn = np.zeros((batch_size, rnn_dim*2), dtype=theano.config.floatX)
rnn_tm1 = sharedX(last_rnn, name='rnn_tm1')
shared_updates = OrderedDict()
shared_updates[step_count] = step_count + 1
s_0 = T.switch(T.eq(T.mod(step_count, reset_freq), 0),
rnn.get_init_state(batch_size), rnn_tm1)
x_1_temp = x_1.fprop([x], params)
x_2_temp = x_2.fprop([x_1_temp], params)
x_3_temp = x_3.fprop([x_2_temp], params)
x_4_temp = x_4.fprop([x_3_temp], params)
def inner_fn(x_t, s_tm1):
phi_1_t = phi_1.fprop([x_t, s_tm1], params)
phi_2_t = phi_2.fprop([phi_1_t], params)
phi_3_t = phi_3.fprop([phi_2_t], params)
phi_4_t = phi_4.fprop([phi_3_t], params)
phi_mu_t = phi_mu.fprop([phi_4_t], params)
phi_sig_t = phi_sig.fprop([phi_4_t], params)
prior_1_t = prior_1.fprop([s_tm1], params)
示例15: flatten
# 需要導入模塊: from cle.cle.layers.feedforward import FullyConnectedLayer [as 別名]
# 或者: from cle.cle.layers.feedforward.FullyConnectedLayer import fprop [as 別名]
unit='softmax',
init_W=init_W,
init_b=init_b)
nodes = [main_lstm,
x_1, x_2, x_3, x_4,
theta_1, theta_2, theta_3, theta_4, theta_mu, theta_sig, coeff]
for node in nodes:
node.initialize()
params = flatten([node.get_params().values() for node in nodes])
x_shape = x.shape
x_in = x.reshape((x_shape[0]*x_shape[1], -1))
x_1_in = x_1.fprop([x_in])
x_2_in = x_2.fprop([x_1_in])
x_3_in = x_3.fprop([x_2_in])
x_4_in = x_4.fprop([x_3_in])
x_4_in = x_4_in.reshape((x_shape[0], x_shape[1], -1))
s_0 = main_lstm.get_init_state(batch_size)
def inner_fn(x_t, s_tm1):
s_t = main_lstm.fprop([[x_t], [s_tm1]])
return s_t
(s_t, updates) = theano.scan(fn=inner_fn,
sequences=[x_4_in],