當前位置: 首頁>>代碼示例>>Python>>正文


Python BeamSearch.search方法代碼示例

本文整理匯總了Python中blocks.search.BeamSearch.search方法的典型用法代碼示例。如果您正苦於以下問題:Python BeamSearch.search方法的具體用法?Python BeamSearch.search怎麽用?Python BeamSearch.search使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在blocks.search.BeamSearch的用法示例。


在下文中一共展示了BeamSearch.search方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_beam_search

# 需要導入模塊: from blocks.search import BeamSearch [as 別名]
# 或者: from blocks.search.BeamSearch import search [as 別名]
def test_beam_search():
    """Test beam search using the model from the reverse_words demo.

    Ideally this test should be done with a trained model, but so far
    only with a randomly initialized one. So it does not really test
    the ability to find the best output sequence, but only correctness
    of returned costs.

    """
    rng = numpy.random.RandomState(1234)
    alphabet_size = 20
    beam_size = 10
    length = 15

    reverser = WordReverser(10, alphabet_size)
    reverser.weights_init = reverser.biases_init = IsotropicGaussian(0.5)
    reverser.initialize()

    inputs = tensor.lmatrix('inputs')
    samples, = VariableFilter(bricks=[reverser.generator], name="outputs")(
        ComputationGraph(reverser.generate(inputs)))

    input_vals = numpy.tile(rng.randint(alphabet_size, size=(length,)),
                            (beam_size, 1)).T

    search = BeamSearch(10, samples)
    results, mask, costs = search.search({inputs: input_vals},
                                         0, 3 * length)

    true_costs = reverser.cost(
        input_vals, numpy.ones((length, beam_size), dtype=floatX),
        results, mask).eval()
    true_costs = (true_costs * mask).sum(axis=0)
    assert_allclose(costs, true_costs, rtol=1e-5)
開發者ID:kelvinxu,項目名稱:blocks,代碼行數:36,代碼來源:test_search.py

示例2: test_beam_search

# 需要導入模塊: from blocks.search import BeamSearch [as 別名]
# 或者: from blocks.search.BeamSearch import search [as 別名]
def test_beam_search():
    """Test beam search using the model similar to the reverse_words demo.

    Ideally this test should be done with a trained model, but so far
    only with a randomly initialized one. So it does not really test
    the ability to find the best output sequence, but only correctness
    of returned costs.

    """
    rng = numpy.random.RandomState(1234)
    alphabet_size = 20
    beam_size = 10
    length = 15

    simple_generator = SimpleGenerator(10, alphabet_size, seed=1234)
    simple_generator.weights_init = IsotropicGaussian(0.5)
    simple_generator.biases_init = IsotropicGaussian(0.5)
    simple_generator.initialize()

    inputs = tensor.lmatrix('inputs')
    samples, = VariableFilter(
            applications=[simple_generator.generator.generate],
            name="outputs")(
        ComputationGraph(simple_generator.generate(inputs)))

    input_vals = numpy.tile(rng.randint(alphabet_size, size=(length,)),
                            (beam_size, 1)).T

    search = BeamSearch(samples)
    results, mask, costs = search.search(
        {inputs: input_vals}, 0, 3 * length, as_arrays=True)
    # Just check sum
    assert results.sum() == 2816

    true_costs = simple_generator.cost(
        input_vals, numpy.ones((length, beam_size),
                               dtype=theano.config.floatX),
        results, mask).eval()
    true_costs = (true_costs * mask).sum(axis=0)
    assert_allclose(costs.sum(axis=0), true_costs, rtol=1e-5)

    # Test `as_lists=True`
    results2, costs2 = search.search({inputs: input_vals},
                                     0, 3 * length)
    for i in range(len(results2)):
        assert results2[i] == list(results.T[i, :mask.T[i].sum()])
開發者ID:vikkamath,項目名稱:blocks,代碼行數:48,代碼來源:test_search.py

示例3: generate

# 需要導入模塊: from blocks.search import BeamSearch [as 別名]
# 或者: from blocks.search.BeamSearch import search [as 別名]
        def generate(input_):
            """Generate output sequences for an input sequence.

            Incapsulates most of the difference between sampling and beam
            search.

            Returns
            -------
            outputs : list of lists
                Trimmed output sequences.
            costs : list
                The negative log-likelihood of generating the respective
                sequences.

            """
            if mode == "beam_search":
                samples, = VariableFilter(
                    bricks=[reverser.generator], name="outputs")(
                        ComputationGraph(generated[1]))
                # NOTE: this will recompile beam search functions
                # every time user presses Enter. Do not create
                # a new `BeamSearch` object every time if
                # speed is important for you.
                beam_search = BeamSearch(input_.shape[1], samples)
                outputs, _, costs = beam_search.search(
                    {chars: input_}, char2code['</S>'],
                    3 * input_.shape[0])
            else:
                _1, outputs, _2, _3, costs = (
                    model.get_theano_function()(input_))
                costs = costs.T

            outputs = list(outputs.T)
            costs = list(costs)
            for i in range(len(outputs)):
                outputs[i] = list(outputs[i])
                try:
                    true_length = outputs[i].index(char2code['</S>']) + 1
                except ValueError:
                    true_length = len(outputs[i])
                outputs[i] = outputs[i][:true_length]
                if mode == "sample":
                    costs[i] = costs[i][:true_length].sum()
            return outputs, costs
開發者ID:kelvinxu,項目名稱:blocks,代碼行數:46,代碼來源:__init__.py

示例4: BeamSearchEvaluator

# 需要導入模塊: from blocks.search import BeamSearch [as 別名]
# 或者: from blocks.search.BeamSearch import search [as 別名]
class BeamSearchEvaluator(object):
    def __init__(self, eol_symbol, beam_size, x, x_mask, samples,
                 phoneme_dict=None, black_list=None):
        if black_list is None:
            self.black_list = []
        else:
            self.black_list = black_list
        self.x = x
        self.x_mask = x_mask
        self.eol_symbol = eol_symbol
        self.beam_size = beam_size
        self.beam_search = BeamSearch(beam_size, samples)
        self.beam_search.compile()
        self.phoneme_dict = phoneme_dict

    def evaluate(self, data_stream, train=False, file_pred=None,
                 file_targets=None):
        loss = 0.
        num_examples = 0
        iterator = data_stream.get_epoch_iterator()
        if train:
            print 'Train evaluation started'
        i = 0
        for inputs in iterator:
            inputs = dict(zip(data_stream.sources, inputs))
            x_mask_val = inputs['features_mask']
            x_val = inputs['features']
            y_val = inputs['phonemes']
            y_mask_val = inputs['phonemes_mask']
            for batch_ind in xrange(inputs['features'].shape[1]):
                if x_val.ndim == 2:
                    input_beam = numpy.tile(x_val[:, batch_ind][:, None],
                        (1, self.beam_size))
                else:
                    input_beam = numpy.tile(x_val[:, batch_ind, :][:, None, :],
                                            (1, self.beam_size, 1))
                input_mask_beam = numpy.tile(x_mask_val[:, batch_ind][:, None],
                                             (1, self.beam_size))
                predictions, _ = self.beam_search.search(
                    {self.x: input_beam,
                     self.x_mask: input_mask_beam},
                    self.eol_symbol, 100)
                predictions = [self.phoneme_dict[phone_ind] for phone_ind
                             in predictions[0]
                             if self.phoneme_dict[phone_ind] not in
                             self.black_list][1:-1]

                targets = y_val[:sum(y_mask_val[:, batch_ind]), batch_ind]
                targets = [self.phoneme_dict[phone_ind] for phone_ind
                             in targets
                             if self.phoneme_dict[phone_ind] not in
                             self.black_list][1:-1]
                predictions = [x[0] for x in groupby(predictions)]
                targets = [x[0] for x in groupby(targets)]
                i += 1
                if file_pred:
                    file_pred.write(' '.join(predictions) + '(%d)\n' % i)
                if file_targets:
                    file_targets.write(' '.join(targets) + '(%d)\n' %i)

                loss += Evaluation.wer([predictions], [targets])
                num_examples += 1

            print '.. found sequence example:', ' '.join(predictions)
            print '.. real output was:       ', ' '.join(targets)
            if train:
                break
        if train:
            print 'Train evaluation finished'
        per = loss.sum() / num_examples
        return {'per': per}
開發者ID:EricDoug,項目名稱:recurrent-batch-normalization,代碼行數:73,代碼來源:monitoring.py

示例5: main

# 需要導入模塊: from blocks.search import BeamSearch [as 別名]
# 或者: from blocks.search.BeamSearch import search [as 別名]

#.........這裏部分代碼省略.........
            logger.info('    {:15}: {}'.format(shape, count))
        logger.info("Total number of parameters: {}".format(len(shapes)))

        # Print parameter names
        enc_dec_param_dict = merge(Selector(encoder).get_parameters(),
                                   Selector(decoder).get_parameters())
        logger.info("Parameter names: ")
        for name, value in enc_dec_param_dict.items():
            logger.info('    {:15}: {}'.format(value.get_value().shape, name))
        logger.info("Total number of parameters: {}"
                    .format(len(enc_dec_param_dict)))

        # Set up training model
        logger.info("Building model")
        training_model = Model(cost)

        # Set extensions
        logger.info("Initializing extensions")
        extensions = [
            FinishAfter(after_n_batches=config['finish_after']),
            TrainingDataMonitoring([cost], after_batch=True),
            Printing(after_batch=True),
            CheckpointNMT(config['saveto'],
                          every_n_batches=config['save_freq'])
        ]

        # Set up beam search and sampling computation graphs if necessary
        if config['hook_samples'] >= 1 or config['bleu_script'] is not None:
            logger.info("Building sampling model")
            sampling_representation = encoder.apply(
                sampling_input, tensor.ones(sampling_input.shape))
            generated = decoder.generate(
                sampling_input, sampling_representation)
            search_model = Model(generated)
            _, samples = VariableFilter(
                bricks=[decoder.sequence_generator], name="outputs")(
                    ComputationGraph(generated[1]))

        # Add sampling
        if config['hook_samples'] >= 1:
            logger.info("Building sampler")
            extensions.append(
                Sampler(model=search_model, data_stream=tr_stream,
                        hook_samples=config['hook_samples'],
                        every_n_batches=config['sampling_freq'],
                        src_vocab_size=config['src_vocab_size']))

        # Add early stopping based on bleu
        if config['bleu_script'] is not None:
            logger.info("Building bleu validator")
            extensions.append(
                BleuValidator(sampling_input, samples=samples, config=config,
                              model=search_model, data_stream=dev_stream,
                              normalize=config['normalized_bleu'],
                              every_n_batches=config['bleu_val_freq']))

        # Reload model if necessary
        if config['reload']:
            extensions.append(LoadNMT(config['saveto']))

        # Plot cost in bokeh if necessary
        if use_bokeh and BOKEH_AVAILABLE:
            extensions.append(
                Plot('Cs-En', channels=[['decoder_cost_cost']],
                     after_batch=True))
開發者ID:guxiaodong1987,項目名稱:blocks-examples,代碼行數:69,代碼來源:__init__.py

示例6: BleuValidator

# 需要導入模塊: from blocks.search import BeamSearch [as 別名]
# 或者: from blocks.search.BeamSearch import search [as 別名]
class BleuValidator(SimpleExtension, SamplingBase):
    def __init__(
        self,
        source_sentence,
        samples,
        model,
        data_stream,
        config,
        n_best=1,
        track_n_models=1,
        trg_ivocab=None,
        src_eos_idx=-1,
        trg_eos_idx=-1,
        **kwargs
    ):
        super(BleuValidator, self).__init__(**kwargs)
        self.source_sentence = source_sentence
        self.samples = samples
        self.model = model
        self.data_stream = data_stream
        self.config = config
        self.n_best = n_best
        self.track_n_models = track_n_models
        self.verbose = config.get("val_set_out", None)

        self.src_eos_idx = src_eos_idx
        self.trg_eos_idx = trg_eos_idx

        # Helpers
        self.vocab = data_stream.dataset.dictionary
        self.trg_ivocab = trg_ivocab
        self.unk_sym = data_stream.dataset.unk_token
        self.eos_sym = data_stream.dataset.eos_token
        self.unk_idx = self.vocab[self.unk_sym]
        self.eos_idx = self.src_eos_idx  # self.vocab[self.eos_sym]
        self.best_models = []
        self.val_bleu_curve = []
        self.beam_search = BeamSearch(beam_size=self.config["beam_size"], samples=samples)
        self.multibleu_cmd = ["perl", self.config["bleu_script"], self.config["val_set_grndtruth"], "<"]

        # Create saving directory if it does not exist
        if not os.path.exists(self.config["saveto"]):
            os.makedirs(self.config["saveto"])

        if self.config["reload"]:
            try:
                bleu_score = numpy.load(os.path.join(self.config["saveto"], "val_bleu_scores.npz"))
                self.val_bleu_curve = bleu_score["bleu_scores"].tolist()

                # Track n best previous bleu scores
                for i, bleu in enumerate(sorted(self.val_bleu_curve, reverse=True)):
                    if i < self.track_n_models:
                        self.best_models.append(ModelInfo(bleu))
                logger.info("BleuScores Reloaded")
            except:
                logger.info("BleuScores not Found")

    def do(self, which_callback, *args):

        # Track validation burn in
        if self.main_loop.status["iterations_done"] <= self.config["val_burn_in"]:
            return

        # Get current model parameters
        self.model.set_param_values(self.main_loop.model.get_param_values())

        # Evaluate and save if necessary
        self._save_model(self._evaluate_model())

    def _evaluate_model(self):

        logger.info("Started Validation: ")
        val_start_time = time.time()
        mb_subprocess = Popen(self.multibleu_cmd, stdin=PIPE, stdout=PIPE)
        total_cost = 0.0

        # Get target vocabulary
        if not self.trg_ivocab:
            sources = self._get_attr_rec(self.main_loop, "data_stream")
            trg_vocab = sources.data_streams[1].dataset.dictionary
            self.trg_ivocab = {v: k for k, v in trg_vocab.items()}

        if self.verbose:
            ftrans = open(self.config["val_set_out"], "w")

        for i, line in enumerate(self.data_stream.get_epoch_iterator()):
            """
            Load the sentence, retrieve the sample, write to file
            """

            line[0][-1] = self.src_eos_idx
            seq = self._oov_to_unk(line[0])
            input_ = numpy.tile(seq, (self.config["beam_size"], 1))

            # draw sample, checking to ensure we don't get an empty string back
            trans, costs = self.beam_search.search(
                input_values={self.source_sentence: input_},
                max_length=3 * len(seq),
                eol_symbol=self.trg_eos_idx,
                ignore_first_eol=True,
#.........這裏部分代碼省略.........
開發者ID:rizar,項目名稱:NMT,代碼行數:103,代碼來源:sampling.py

示例7: BleuValidator

# 需要導入模塊: from blocks.search import BeamSearch [as 別名]
# 或者: from blocks.search.BeamSearch import search [as 別名]
class BleuValidator(SimpleExtension, SamplingBase):
    # TODO: a lot has been changed in NMT, sync respectively
    """Implements early stopping based on BLEU score."""

    def __init__(self, source_sentence, samples, model, data_stream,
                 config, n_best=1, track_n_models=1,
                 normalize=True, **kwargs):
        # TODO: change config structure
        super(BleuValidator, self).__init__(**kwargs)
        self.source_sentence = source_sentence
        self.samples = samples
        self.model = model
        self.data_stream = data_stream
        self.config = config
        self.n_best = n_best
        self.track_n_models = track_n_models
        self.normalize = normalize
        self.verbose = config.get('val_set_out', None)

        # Helpers
        self.vocab = data_stream.dataset.dictionary
        self.unk_sym = data_stream.dataset.unk_token
        self.eos_sym = data_stream.dataset.eos_token
        self.unk_idx = self.vocab[self.unk_sym]
        self.eos_idx = self.vocab[self.eos_sym]
        self.best_models = []
        self.val_bleu_curve = []
        self.beam_search = BeamSearch(samples=samples)
        self.multibleu_cmd = ['perl', self.config['bleu_script'],
                              self.config['val_set_grndtruth'], '<']

        # Create saving directory if it does not exist
        if not os.path.exists(self.config['saveto']):
            os.makedirs(self.config['saveto'])

        if self.config['reload']:
            try:
                bleu_score = numpy.load(os.path.join(self.config['saveto'],
                                        'val_bleu_scores.npz'))
                self.val_bleu_curve = bleu_score['bleu_scores'].tolist()

                # Track n best previous bleu scores
                for i, bleu in enumerate(
                        sorted(self.val_bleu_curve, reverse=True)):
                    if i < self.track_n_models:
                        self.best_models.append(ModelInfo(bleu))
                logger.info("BleuScores Reloaded")
            except:
                logger.info("BleuScores not Found")

    def do(self, which_callback, *args):

        # Track validation burn in
        if self.main_loop.status['iterations_done'] <= \
                self.config['val_burn_in']:
            return

        # Evaluate and save if necessary
        self._save_model(self._evaluate_model())

    def _evaluate_model(self):

        logger.info("Started Validation: ")
        val_start_time = time.time()
        mb_subprocess = Popen(self.multibleu_cmd, stdin=PIPE, stdout=PIPE)
        total_cost = 0.0

        # Get target vocabulary
        sources = self._get_attr_rec(self.main_loop, 'data_stream')
        trg_vocab = sources.data_streams[1].dataset.dictionary
        self.trg_ivocab = {v: k for k, v in trg_vocab.items()}
        trg_eos_sym = sources.data_streams[1].dataset.eos_token
        self.trg_eos_idx = trg_vocab[trg_eos_sym]

        if self.verbose:
            ftrans = open(self.config['val_set_out'], 'w')

        for i, line in enumerate(self.data_stream.get_epoch_iterator()):
            """
            Load the sentence, retrieve the sample, write to file
            """

            seq = self._oov_to_unk(
                line[0], self.config['src_vocab_size'], self.unk_idx)
            input_ = numpy.tile(seq, (self.config['beam_size'], 1))

            # draw sample, checking to ensure we don't get an empty string back
            trans, costs = \
                self.beam_search.search(
                    input_values={self.source_sentence: input_},
                    max_length=3*len(seq), eol_symbol=self.trg_eos_idx,
                    ignore_first_eol=True)

            # normalize costs according to the sequence lengths
            if self.normalize:
                lengths = numpy.array([len(s) for s in trans])
                costs = costs / lengths

            nbest_idx = numpy.argsort(costs)[:self.n_best]
            for j, best in enumerate(nbest_idx):
#.........這裏部分代碼省略.........
開發者ID:MLDL,項目名稱:blocks-examples,代碼行數:103,代碼來源:sampling.py

示例8: BleuEvaluator

# 需要導入模塊: from blocks.search import BeamSearch [as 別名]
# 或者: from blocks.search.BeamSearch import search [as 別名]
class BleuEvaluator(SimpleExtension, SamplingBase):
    def __init__(self, source_sentence, samples, model, data_stream, ground_truth, config,
                 val_out=None, val_best_out=None, n_best=1, normalize=True, **kwargs):
        # TODO: change config structure
        super(BleuEvaluator, self).__init__(**kwargs)
        self.source_sentence = source_sentence
        self.samples = samples
        self.model = model
        self.data_stream = data_stream
        self.config = config
        self.n_best = n_best
        self.normalize = normalize
        self.val_out = val_out
        self.val_best_out = val_out and val_best_out
        self.bleu_scores = []

        self.trg_ivocab = None
        self.unk_id = config['unk_id']
        self.eos_id = config['eos_id']
        self.beam_search = BeamSearch(samples=samples)
        self.multibleu_cmd = ['perl', self.config['bleu_script'], ground_truth, '<']

    def do(self, which_callback, *args):
        # Track validation burn in
        if self.main_loop.status['iterations_done'] <= self.config['val_burn_in']:
            return

        self._evaluate_model()

    def _evaluate_model(self):
        logger.info("Started Validation: ")
        val_start_time = time.time()
        mb_subprocess = Popen(self.multibleu_cmd, stdin=PIPE, stdout=PIPE)
        total_cost = 0.0

        if self.trg_ivocab is None:
            sources = self._get_attr_rec(self.main_loop, 'data_stream')
            trg_vocab = sources.data_streams[1].dataset.dictionary
            self.trg_ivocab = {v: k for k, v in trg_vocab.items()}

        if self.val_out:
            output_file = open(self.val_out, 'w')

        for i, line in enumerate(self.data_stream.get_epoch_iterator()):
            """
            Load the sentence, retrieve the sample, write to file
            """

            seq = self._oov_to_unk(line[0], self.config['src_vocab_size'], self.unk_id)
            input_ = numpy.tile(seq, (self.config['beam_size'], 1))

            # draw sample, checking to ensure we don't get an empty string back
            trans, costs = self.beam_search.search(
                input_values={self.source_sentence: input_},
                max_length=3 * len(seq), eol_symbol=self.eos_id,
                ignore_first_eol=True)

            # normalize costs according to the sequence lengths
            if self.normalize:
                lengths = numpy.array([len(s) for s in trans])
                costs = costs / lengths

            nbest_idx = numpy.argsort(costs)[:self.n_best]
            for j, best in enumerate(nbest_idx):
                try:
                    total_cost += costs[best]
                    trans_out = trans[best]

                    # keeping eos tokens reduces BLEU score
                    if self.config['remove_eos']:
                        trans_out = [idx for idx in trans_out if idx != self.eos_id]
                    # however keeping unk tokens might be a good idea (avoids brevity penalty)
                    if self.config['remove_unk']:
                        trans_out = [idx for idx in trans_out if idx != self.unk_id]

                    # convert idx to words
                    trans_out = self._idx_to_word(trans_out, self.trg_ivocab)

                except ValueError:
                    logger.info("Can NOT find a translation for line: {}".format(i + 1))
                    trans_out = '<UNK>'

                if j == 0:
                    # Write to subprocess and file if it exists
                    print(trans_out, file=mb_subprocess.stdin)
                    if self.val_out:
                        print(trans_out, file=output_file)

            if i != 0 and i % 100 == 0:
                logger.info("Translated {} lines of validation set...".format(i))

            mb_subprocess.stdin.flush()

        logger.info("Total cost of the validation: {}".format(total_cost))
        self.data_stream.reset()
        if self.val_out:
            output_file.close()

        # send end of file, read output.
        mb_subprocess.stdin.close()
#.........這裏部分代碼省略.........
開發者ID:eske,項目名稱:blocks-examples,代碼行數:103,代碼來源:sampling.py

示例9: SpeechRecognizer

# 需要導入模塊: from blocks.search import BeamSearch [as 別名]
# 或者: from blocks.search.BeamSearch import search [as 別名]
class SpeechRecognizer(Initializable):
    """Encapsulate all reusable logic.

    This class plays a few roles: (a) it's a top brick that knows
    how to combine bottom, bidirectional and recognizer network, (b)
    it has the inputs variables and can build whole computation graphs
    starting with them (c) it hides compilation of Theano functions
    and initialization of beam search. I find it simpler to have it all
    in one place for research code.

    Parameters
    ----------
    All defining the structure and the dimensions of the model. Typically
    receives everything from the "net" section of the config.

    """
    def __init__(self, recordings_source, labels_source, eos_label,
                 num_features, num_phonemes,
                 dim_dec, dims_bidir, dims_bottom,
                 enc_transition, dec_transition,
                 use_states_for_readout,
                 attention_type,
                 lm=None, character_map=None,
                 subsample=None,
                 dims_top=None,
                 prior=None, conv_n=None,
                 bottom_activation=None,
                 post_merge_activation=None,
                 post_merge_dims=None,
                 dim_matcher=None,
                 embed_outputs=True,
                 dec_stack=1,
                 conv_num_filters=1,
                 data_prepend_eos=True,
                 energy_normalizer=None,  # softmax is th edefault set in SequenceContentAndConvAttention
                 **kwargs):
        if bottom_activation is None:
            bottom_activation = Tanh()
        if post_merge_activation is None:
            post_merge_activation = Tanh()
        super(SpeechRecognizer, self).__init__(**kwargs)
        self.recordings_source = recordings_source
        self.labels_source = labels_source
        self.eos_label = eos_label
        self.data_prepend_eos = data_prepend_eos

        self.rec_weights_init = None
        self.initial_states_init = None

        self.enc_transition = enc_transition
        self.dec_transition = dec_transition
        self.dec_stack = dec_stack

        bottom_activation = bottom_activation
        post_merge_activation = post_merge_activation

        if dim_matcher is None:
            dim_matcher = dim_dec

        # The bottom part, before BiRNN
        if dims_bottom:
            bottom = MLP([bottom_activation] * len(dims_bottom),
                         [num_features] + dims_bottom,
                         name="bottom")
        else:
            bottom = Identity(name='bottom')

        # BiRNN
        if not subsample:
            subsample = [1] * len(dims_bidir)
        encoder = Encoder(self.enc_transition, dims_bidir,
                          dims_bottom[-1] if len(dims_bottom) else num_features,
                          subsample)

        # The top part, on top of BiRNN but before the attention
        if dims_top:
            top = MLP([Tanh()],
                      [2 * dims_bidir[-1]] + dims_top + [2 * dims_bidir[-1]], name="top")
        else:
            top = Identity(name='top')

        if dec_stack == 1:
            transition = self.dec_transition(
                dim=dim_dec, activation=Tanh(), name="transition")
        else:
            transitions = [self.dec_transition(dim=dim_dec,
                                               activation=Tanh(),
                                               name="transition_{}".format(trans_level))
                           for trans_level in xrange(dec_stack)]
            transition = RecurrentStack(transitions=transitions,
                                        skip_connections=True)
        # Choose attention mechanism according to the configuration
        if attention_type == "content":
            attention = SequenceContentAttention(
                state_names=transition.apply.states,
                attended_dim=2 * dims_bidir[-1], match_dim=dim_matcher,
                name="cont_att")
        elif attention_type == "content_and_conv":
            attention = SequenceContentAndConvAttention(
                state_names=transition.apply.states,
#.........這裏部分代碼省略.........
開發者ID:ZhangAustin,項目名稱:attention-lvcsr,代碼行數:103,代碼來源:recognizer.py

示例10: BleuValidator

# 需要導入模塊: from blocks.search import BeamSearch [as 別名]
# 或者: from blocks.search.BeamSearch import search [as 別名]
class BleuValidator(SimpleExtension):
    """Implements early stopping based on BLEU score. This class is 
    still very similar to the ``BleuValidator`` in the NMT Blocks
    example.
    
    TODO: Refactor, make this more similar to the rest of SGNMT, use
    vanilla_decoder.py
    """

    def __init__(self, 
                 source_sentence, 
                 samples, 
                 model, 
                 data_stream,
                 config, 
                 n_best=1, 
                 track_n_models=1,
                 normalize=True, 
                 store_full_main_loop=False, 
                 **kwargs):
        """Creates a new extension which adds model selection based on
        the BLEU score to the training main loop.
        
        Args:
            source_sentence (Variable): Input variable to the sampling
                                        computation graph
            samples (Variable): Samples variable of the CG
            model (NMTModel): See the model module
            data_stream (DataStream): Data stream to the development 
                                      set
            config (dict): NMT configuration
            n_best (int): beam size
            track_n_models (int): Number of n-best models for which to 
                                  create checkpoints.
            normalize (boolean): Enables length normalization
            store_full_main_loop (boolean): Stores the iteration state
                                            in the old style of
                                            Blocks 0.1. Not recommended
        """
        super(BleuValidator, self).__init__(**kwargs)
        self.store_full_main_loop = store_full_main_loop
        self.source_sentence = source_sentence
        self.samples = samples
        self.model = model
        self.data_stream = data_stream
        self.config = config
        self.n_best = n_best
        self.track_n_models = track_n_models
        self.normalize = normalize
        self.best_models = []
        self.val_bleu_curve = []
        self.multibleu_cmd = (self.config['bleu_script'] % self.config['val_set_grndtruth']).split()
        logging.debug("BLEU command: %s" % self.multibleu_cmd)

        self.src_sparse_feat_map = config['src_sparse_feat_map'] if config['src_sparse_feat_map'] \
                                                                 else FlatSparseFeatMap()
        if config['trg_sparse_feat_map']:
            self.trg_sparse_feat_map = config['trg_sparse_feat_map']
            self.beam_search = SparseBeamSearch(
                                 samples=samples, 
                                 trg_sparse_feat_map=self.trg_sparse_feat_map) 
        else:
            self.trg_sparse_feat_map = FlatSparseFeatMap()
            self.beam_search = BeamSearch(samples=samples)
        
        # Create saving directory if it does not exist
        if not os.path.exists(self.config['saveto']):
            os.makedirs(self.config['saveto'])

        if self.config['reload']:
            try:
                bleu_score = numpy.load(os.path.join(self.config['saveto'],
                                        'val_bleu_scores.npz'))
                self.val_bleu_curve = bleu_score['bleu_scores'].tolist()
                # Track n best previous bleu scores
                for i, bleu in enumerate(
                        sorted(self.val_bleu_curve, reverse=True)):
                    if i < self.track_n_models:
                        self.best_models.append(ModelInfo(bleu))
                logging.info("BleuScores Reloaded")
            except:
                logging.info("BleuScores not Found")

    def do(self, which_callback, *args):
        """Decodes the dev set and stores checkpoints in case the BLEU
        score has improved.
        """
        if self.main_loop.status['iterations_done'] <= \
                self.config['val_burn_in']:
            return
        self._save_model(self._evaluate_model())

    def _evaluate_model(self):
        """Evaluate model and store checkpoints. """
        logging.info("Started Validation: ")
        val_start_time = time.time()
        mb_subprocess = Popen(self.multibleu_cmd, stdin=PIPE, stdout=PIPE)
        total_cost = 0.0
        ftrans = open(self.config['saveto'] + '/validation_out.txt', 'w')
        for i, line in enumerate(self.data_stream.get_epoch_iterator()):
#.........這裏部分代碼省略.........
開發者ID:ucam-smt,項目名稱:sgnmt,代碼行數:103,代碼來源:sampling.py

示例11: BlocksNMTVanillaDecoder

# 需要導入模塊: from blocks.search import BeamSearch [as 別名]
# 或者: from blocks.search.BeamSearch import search [as 別名]
class BlocksNMTVanillaDecoder(Decoder):
    """Adaptor class for blocks.search.BeamSearch. We implement the
    ``Decoder`` class but ignore functionality for predictors or
    heuristics. Instead, we pass through decoding directly to the 
    blocks beam search module. This is fast, but breaks with the
    predictor framework. It can only be used for pure single system
    NMT decoding. Note that this decoder supports sparse feat maps
    on both source and target side.
    """
    
    def __init__(self, nmt_model_path, config, decoder_args):
        """Set up the NMT model used by the decoder.
        
        Args:
            nmt_model_path (string):  Path to the NMT model file (.npz)
            config (dict): NMT configuration
            decoder_args (object): Decoder configuration passed through
                                   from configuration API.
        """
        super(BlocksNMTVanillaDecoder, self).__init__(decoder_args)
        self.config = config
        self.set_up_decoder(nmt_model_path)
        self.src_eos = self.src_sparse_feat_map.word2dense(utils.EOS_ID)
    
    def set_up_decoder(self, nmt_model_path):
        """This method uses the NMT configuration in ``self.config`` to
        initialize the NMT model. This method basically corresponds to 
        ``blocks.machine_translation.main``.
        
        Args:
            nmt_model_path (string):  Path to the NMT model file (.npz)
        """
        self.nmt_model = NMTModel(self.config)
        self.nmt_model.set_up()
        loader = LoadNMTUtils(nmt_model_path,
                              self.config['saveto'],
                              self.nmt_model.search_model)
        loader.load_weights()
        self.src_sparse_feat_map = self.config['src_sparse_feat_map'] \
                if self.config['src_sparse_feat_map'] else FlatSparseFeatMap()
        if self.config['trg_sparse_feat_map']:
            self.trg_sparse_feat_map = self.config['trg_sparse_feat_map']
            self.beam_search = SparseBeamSearch(
                                 samples=self.nmt_model.samples, 
                                 trg_sparse_feat_map=self.trg_sparse_feat_map) 
        else:
            self.trg_sparse_feat_map = FlatSparseFeatMap()
            self.beam_search = BeamSearch(samples=self.nmt_model.samples)
    
    def decode(self, src_sentence):
        """Decodes a single source sentence with the original blocks
        beam search decoder. Does not use predictors. Note that the
        score breakdowns in returned hypotheses are only on the 
        sentence level, not on the word level. For finer grained NMT
        scores you need to use the nmt predictor. ``src_sentence`` is a
        list of source word ids representing the source sentence without
        <S> or </S> symbols. As blocks expects to see </S>, this method
        adds it automatically.
        
        Args:
            src_sentence (list): List of source word ids without <S> or
                                 </S> which make up the source sentence
        
        Returns:
            list. A list of ``Hypothesis`` instances ordered by their
            score.
        """
        seq = self.src_sparse_feat_map.words2dense(utils.oov_to_unk(
                src_sentence,
                self.config['src_vocab_size'])) + [self.src_eos]
        if self.src_sparse_feat_map.dim > 1: # sparse src feats
            input_ = np.transpose(
                            np.tile(seq, (self.config['beam_size'], 1, 1)),
                            (2,0,1))
        else: # word ids on the source side
            input_ = np.tile(seq, (self.config['beam_size'], 1))
        trans, costs = self.beam_search.search(
                    input_values={self.nmt_model.sampling_input: input_},
                    max_length=3*len(src_sentence),
                    eol_symbol=utils.EOS_ID,
                    ignore_first_eol=True)
        hypos = []
        max_len = 0
        for idx in xrange(len(trans)):
            max_len = max(max_len, len(trans[idx]))
            hypo = Hypothesis(trans[idx], -costs[idx])
            hypo.score_breakdown = len(trans[idx]) * [[(0.0,1.0)]]
            hypo.score_breakdown[0] = [(-costs[idx],1.0)]
            hypos.append(hypo)
        self.apply_predictors_count = max_len * self.config['beam_size']
        return hypos
    
    def has_predictors(self):
        """Always returns true. """
        return True
開發者ID:ucam-smt,項目名稱:sgnmt,代碼行數:97,代碼來源:vanilla_decoder.py

示例12: SpeechRecognizer

# 需要導入模塊: from blocks.search import BeamSearch [as 別名]
# 或者: from blocks.search.BeamSearch import search [as 別名]
class SpeechRecognizer(Initializable):
    """Encapsulate all reusable logic.

    This class plays a few roles: (a) it's a top brick that knows
    how to combine bottom, bidirectional and recognizer network, (b)
    it has the inputs variables and can build whole computation graphs
    starting with them (c) it hides compilation of Theano functions
    and initialization of beam search. I find it simpler to have it all
    in one place for research code.

    Parameters
    ----------
    All defining the structure and the dimensions of the model. Typically
    receives everything from the "net" section of the config.

    """

    def __init__(self,
                 input_dims,
                 input_num_chars,
                 eos_label,
                 num_phonemes,
                 dim_dec, dims_bidir,
                 enc_transition, dec_transition,
                 use_states_for_readout,
                 attention_type,
                 criterion,
                 bottom,
                 lm=None, character_map=None,
                 bidir=True,
                 subsample=None,
                 dims_top=None,
                 prior=None, conv_n=None,
                 post_merge_activation=None,
                 post_merge_dims=None,
                 dim_matcher=None,
                 embed_outputs=True,
                 dim_output_embedding=None,
                 dec_stack=1,
                 conv_num_filters=1,
                 data_prepend_eos=True,
                 # softmax is the default set in SequenceContentAndConvAttention
                 energy_normalizer=None,
                 # for speech this is the approximate phoneme duration in frames
                 max_decoded_length_scale=1,
                 **kwargs):

        if post_merge_activation is None:
            post_merge_activation = Tanh()
        super(SpeechRecognizer, self).__init__(**kwargs)
        self.eos_label = eos_label
        self.data_prepend_eos = data_prepend_eos

        self.rec_weights_init = None
        self.initial_states_init = None

        self.enc_transition = enc_transition
        self.dec_transition = dec_transition
        self.dec_stack = dec_stack

        self.criterion = criterion

        self.max_decoded_length_scale = max_decoded_length_scale

        post_merge_activation = post_merge_activation

        if dim_matcher is None:
            dim_matcher = dim_dec

        # The bottom part, before BiRNN
        bottom_class = bottom.pop('bottom_class')
        bottom = bottom_class(
            input_dims=input_dims, input_num_chars=input_num_chars,
            name='bottom',
            **bottom)

        # BiRNN
        if not subsample:
            subsample = [1] * len(dims_bidir)
        encoder = Encoder(self.enc_transition, dims_bidir,
                          bottom.get_dim(bottom.apply.outputs[0]),
                          subsample, bidir=bidir)
        dim_encoded = encoder.get_dim(encoder.apply.outputs[0])

        # The top part, on top of BiRNN but before the attention
        if dims_top:
            top = MLP([Tanh()],
                      [dim_encoded] + dims_top + [dim_encoded], name="top")
        else:
            top = Identity(name='top')

        if dec_stack == 1:
            transition = self.dec_transition(
                dim=dim_dec, activation=Tanh(), name="transition")
        else:
            transitions = [self.dec_transition(dim=dim_dec,
                                               activation=Tanh(),
                                               name="transition_{}".format(trans_level))
                           for trans_level in xrange(dec_stack)]
            transition = RecurrentStack(transitions=transitions,
#.........這裏部分代碼省略.........
開發者ID:DingKe,項目名稱:attention-lvcsr,代碼行數:103,代碼來源:recognizer.py

示例13: open

# 需要導入模塊: from blocks.search import BeamSearch [as 別名]
# 或者: from blocks.search.BeamSearch import search [as 別名]
    unk_idx = config['unk_id']
    src_eos_idx = config['src_vocab_size'] - 1
    trg_eos_idx = config['trg_vocab_size'] - 1

    ftrans = open('/Users/lqy/Documents/transout.txt','w',0)

    falign = gzip.open('/Users/lqy/Documents/alignmentout','w',0)

        
    for i, line in enumerate(validate_stream.get_epoch_iterator()):
        source_line = line[0]
        #line_tok = mergeSplit(source_token[i])
        seq = nmt._oov_to_unk(line[0], config['src_vocab_size'], unk_idx)
        input_ = numpy.tile(seq, (config['beam_size'], 1)) #產生12 行1列的元素矩陣,元素指的是一個的序列
        #print "input_: ",input_[3]
        trans,costs = beam_search.search(input_values={source_sentence: input_[:]},max_length=3*len(seq), eol_symbol=src_eos_idx,ignore_first_eol=True)

        lengths = numpy.array([len(s) for s in trans])
        costs = costs / lengths

        best = numpy.argsort(costs)[0]

        trans_out = trans[best]

        source_word = nmt._idx_to_word(line[0],nmt.src_ivocab)
        trans_out_word = nmt._idx_to_word(trans_out, nmt.trg_ivocab)
        trans_out_word_str = trans_out_word.split(" ")
        source_word_str = source_word.split(" ")

        alignment = numpy.asarray(getAlignment(numpy.array(source_line)[None, :],numpy.array(trans_out)[None, :]))
開發者ID:dery-hit,項目名稱:blocks_exercise,代碼行數:32,代碼來源:test_zhu.py

示例14: SaveLoadUtils

# 需要導入模塊: from blocks.search import BeamSearch [as 別名]
# 或者: from blocks.search.BeamSearch import search [as 別名]
params = search_model.get_parameter_dict()
param_values = SaveLoadUtils().load_parameter_values(os.path.join(config['saveto'], 'params.npz'))
for k in params:
    params[k].set_value(param_values[k])

_, samples = VariableFilter(bricks=[decoder.sequence_generator], name="outputs")(ComputationGraph(generated[1]))
beam_search = BeamSearch(samples=samples)

# Read from standard input
stream = get_stdin_stream(**config)

vocab = get_vocab(config['trg_vocab'], config['trg_vocab_size'], config['unk_id'], config['eos_id'], config['bos_id'])
inv_vocab = {v: k for k, v in vocab.iteritems()}

unk_id = config['unk_id']
eos_id = config['eos_id']

for sample in stream.get_epoch_iterator():
    seq = sample[0]
    input_ = np.tile(seq, (config['beam_size'], 1))

    trans, costs = beam_search.search(
            input_values={sampling_input: input_},
            max_length=3 * len(seq), eol_symbol=eos_id,
            ignore_first_eol=True)

    trans_indices = [idx for idx in trans[0] if idx != eos_id]  # remove </S> from output
    trans_out = ' '.join(inv_vocab.get(idx, config['unk_token']) for idx in trans_indices)

    print trans_out
開發者ID:eske,項目名稱:blocks-examples,代碼行數:32,代碼來源:decode.py


注:本文中的blocks.search.BeamSearch.search方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。