當前位置: 首頁>>代碼示例>>Python>>正文


Python BeamSearch.compile方法代碼示例

本文整理匯總了Python中blocks.search.BeamSearch.compile方法的典型用法代碼示例。如果您正苦於以下問題:Python BeamSearch.compile方法的具體用法?Python BeamSearch.compile怎麽用?Python BeamSearch.compile使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在blocks.search.BeamSearch的用法示例。


在下文中一共展示了BeamSearch.compile方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: SpeechRecognizer

# 需要導入模塊: from blocks.search import BeamSearch [as 別名]
# 或者: from blocks.search.BeamSearch import compile [as 別名]

#.........這裏部分代碼省略.........
            mask=recordings_mask)
        encoded = self.top.apply(encoded)
        return self.generator.cost_matrix(
            labels, labels_mask,
            attended=encoded, attended_mask=encoded_mask)

    @application
    def generate(self, recordings):
        encoded, encoded_mask = self.encoder.apply(
            input_=self.bottom.apply(recordings))
        encoded = self.top.apply(encoded)
        return self.generator.generate(
            n_steps=recordings.shape[0], batch_size=recordings.shape[1],
            attended=encoded,
            attended_mask=encoded_mask,
            as_dict=True)

    def load_params(self, path):
        generated = self.get_generate_graph()
        param_values = load_parameter_values(path)
        SpeechModel(generated['outputs']).set_parameter_values(param_values)

    def get_generate_graph(self):
        result = self.generate(self.recordings)
        return result

    def get_cost_graph(self, batch=True):
        if batch:
            return self.cost(
                self.recordings, self.recordings_mask,
                self.labels, self.labels_mask)
        recordings = self.single_recording[:, None, :]
        labels = self.single_transcription[:, None]
        return self.cost(
            recordings, tensor.ones_like(recordings[:, :, 0]),
            labels, None)

    def analyze(self, recording, transcription):
        """Compute cost and aligment for a recording/transcription pair."""
        if not hasattr(self, "_analyze"):
            cost = self.get_cost_graph(batch=False)
            cg = ComputationGraph(cost)
            energies = VariableFilter(
                bricks=[self.generator], name="energies")(cg)
            energies_output = [energies[0][:, 0, :] if energies
                               else tensor.zeros((self.single_transcription.shape[0],
                                                  self.single_recording.shape[0]))]
            states, = VariableFilter(
                applications=[self.encoder.apply], roles=[OUTPUT],
                name="encoded")(cg)
            ctc_matrix_output = []
            # Temporarily disabled for compatibility with LM code
            # if len(self.generator.readout.source_names) == 1:
            #    ctc_matrix_output = [
            #        self.generator.readout.readout(weighted_averages=states)[:, 0, :]]
            weights, = VariableFilter(
                bricks=[self.generator], name="weights")(cg)
            self._analyze = theano.function(
                [self.single_recording, self.single_transcription],
                [cost[:, 0], weights[:, 0, :]] + energies_output + ctc_matrix_output)
        return self._analyze(recording, transcription)

    def init_beam_search(self, beam_size):
        """Compile beam search and set the beam size.

        See Blocks issue #500.

        """
        self.beam_size = beam_size
        generated = self.get_generate_graph()
        samples, = VariableFilter(
            applications=[self.generator.generate], name="outputs")(
            ComputationGraph(generated['outputs']))
        self._beam_search = BeamSearch(beam_size, samples)
        self._beam_search.compile()

    def beam_search(self, recording, char_discount=0.0):
        if not hasattr(self, '_beam_search'):
            self.init_beam_search(self.beam_size)
        input_ = recording[:,numpy.newaxis,:]
        outputs, search_costs = self._beam_search.search(
            {self.recordings: input_}, self.eos_label, input_.shape[0] / 3,
            ignore_first_eol=self.data_prepend_eos,
            char_discount=char_discount)
        return outputs, search_costs

    def __getstate__(self):
        state = dict(self.__dict__)
        for attr in ['_analyze', '_beam_search']:
            state.pop(attr, None)
        return state

    def __setstate__(self, state):
        self.__dict__.update(state)
        # To use bricks used on a GPU first on a CPU later
        try:
            emitter = self.generator.readout.emitter
            del emitter._theano_rng
        except:
            pass
開發者ID:ZhangAustin,項目名稱:attention-lvcsr,代碼行數:104,代碼來源:recognizer.py

示例2: BeamSearchEvaluator

# 需要導入模塊: from blocks.search import BeamSearch [as 別名]
# 或者: from blocks.search.BeamSearch import compile [as 別名]
class BeamSearchEvaluator(object):
    def __init__(self, eol_symbol, beam_size, x, x_mask, samples,
                 phoneme_dict=None, black_list=None):
        if black_list is None:
            self.black_list = []
        else:
            self.black_list = black_list
        self.x = x
        self.x_mask = x_mask
        self.eol_symbol = eol_symbol
        self.beam_size = beam_size
        self.beam_search = BeamSearch(beam_size, samples)
        self.beam_search.compile()
        self.phoneme_dict = phoneme_dict

    def evaluate(self, data_stream, train=False, file_pred=None,
                 file_targets=None):
        loss = 0.
        num_examples = 0
        iterator = data_stream.get_epoch_iterator()
        if train:
            print 'Train evaluation started'
        i = 0
        for inputs in iterator:
            inputs = dict(zip(data_stream.sources, inputs))
            x_mask_val = inputs['features_mask']
            x_val = inputs['features']
            y_val = inputs['phonemes']
            y_mask_val = inputs['phonemes_mask']
            for batch_ind in xrange(inputs['features'].shape[1]):
                if x_val.ndim == 2:
                    input_beam = numpy.tile(x_val[:, batch_ind][:, None],
                        (1, self.beam_size))
                else:
                    input_beam = numpy.tile(x_val[:, batch_ind, :][:, None, :],
                                            (1, self.beam_size, 1))
                input_mask_beam = numpy.tile(x_mask_val[:, batch_ind][:, None],
                                             (1, self.beam_size))
                predictions, _ = self.beam_search.search(
                    {self.x: input_beam,
                     self.x_mask: input_mask_beam},
                    self.eol_symbol, 100)
                predictions = [self.phoneme_dict[phone_ind] for phone_ind
                             in predictions[0]
                             if self.phoneme_dict[phone_ind] not in
                             self.black_list][1:-1]

                targets = y_val[:sum(y_mask_val[:, batch_ind]), batch_ind]
                targets = [self.phoneme_dict[phone_ind] for phone_ind
                             in targets
                             if self.phoneme_dict[phone_ind] not in
                             self.black_list][1:-1]
                predictions = [x[0] for x in groupby(predictions)]
                targets = [x[0] for x in groupby(targets)]
                i += 1
                if file_pred:
                    file_pred.write(' '.join(predictions) + '(%d)\n' % i)
                if file_targets:
                    file_targets.write(' '.join(targets) + '(%d)\n' %i)

                loss += Evaluation.wer([predictions], [targets])
                num_examples += 1

            print '.. found sequence example:', ' '.join(predictions)
            print '.. real output was:       ', ' '.join(targets)
            if train:
                break
        if train:
            print 'Train evaluation finished'
        per = loss.sum() / num_examples
        return {'per': per}
開發者ID:EricDoug,項目名稱:recurrent-batch-normalization,代碼行數:73,代碼來源:monitoring.py

示例3: SpeechRecognizer

# 需要導入模塊: from blocks.search import BeamSearch [as 別名]
# 或者: from blocks.search.BeamSearch import compile [as 別名]

#.........這裏部分代碼省略.........
            prediction_variable = tensor.lvector('prediction')
            if prediction is not None:
                input_variables.append(prediction_variable)
                cg = self.get_cost_graph(
                    batch=False, prediction=prediction_variable[:, None])
            else:
                cg = self.get_cost_graph(batch=False)
            cost = cg.outputs[0]

            weights, = VariableFilter(
                bricks=[self.generator], name="weights")(cg)

            energies = VariableFilter(
                bricks=[self.generator], name="energies")(cg)
            energies_output = [energies[0][:, 0, :] if energies
                               else tensor.zeros_like(weights)]

            states, = VariableFilter(
                applications=[self.encoder.apply], roles=[OUTPUT],
                name="encoded")(cg)

            ctc_matrix_output = []
            # Temporarily disabled for compatibility with LM code
            # if len(self.generator.readout.source_names) == 1:
            #    ctc_matrix_output = [
            #        self.generator.readout.readout(weighted_averages=states)[:, 0, :]]

            self._analyze = theano.function(
                input_variables,
                [cost[:, 0], weights[:, 0, :]] + energies_output + ctc_matrix_output,
                on_unused_input='warn')
        return self._analyze(**input_values_dict)

    def init_beam_search(self, beam_size):
        """Compile beam search and set the beam size.

        See Blocks issue #500.

        """
        if hasattr(self, '_beam_search') and self.beam_size == beam_size:
            # Only recompile if the user wants a different beam size
            return
        self.beam_size = beam_size
        generated = self.get_generate_graph(use_mask=False, n_steps=3)
        cg = ComputationGraph(generated.values())
        samples, = VariableFilter(
            applications=[self.generator.generate], name="outputs")(cg)
        self._beam_search = BeamSearch(beam_size, samples)
        self._beam_search.compile()

    def beam_search(self, inputs, **kwargs):
        # When a recognizer is unpickled, self.beam_size is available
        # but beam search has to be recompiled.

        self.init_beam_search(self.beam_size)
        inputs = dict(inputs)
        max_length = int(self.bottom.num_time_steps(**inputs) /
                         self.max_decoded_length_scale)
        search_inputs = {}
        for var in self.inputs.values():
            search_inputs[var] = inputs.pop(var.name)[:, numpy.newaxis, ...]
        if inputs:
            raise Exception(
                'Unknown inputs passed to beam search: {}'.format(
                    inputs.keys()))
        outputs, search_costs = self._beam_search.search(
            search_inputs, self.eos_label,
            max_length,
            ignore_first_eol=self.data_prepend_eos,
            **kwargs)
        return outputs, search_costs

    def init_generate(self):
        generated = self.get_generate_graph(use_mask=False)
        cg = ComputationGraph(generated['outputs'])
        self._do_generate = cg.get_theano_function()

    def sample(self, inputs, n_steps=None):
        if not hasattr(self, '_do_generate'):
            self.init_generate()
        batch, unused_mask = self.bottom.single_to_batch_inputs(inputs)
        batch['n_steps'] = n_steps if n_steps is not None \
            else int(self.bottom.num_time_steps(**batch) /
                     self.max_decoded_length_scale)
        return self._do_generate(**batch)[0]

    def __getstate__(self):
        state = dict(self.__dict__)
        for attr in ['_analyze', '_beam_search']:
            state.pop(attr, None)
        return state

    def __setstate__(self, state):
        self.__dict__.update(state)
        # To use bricks used on a GPU first on a CPU later
        try:
            emitter = self.generator.readout.emitter
            del emitter._theano_rng
        except:
            pass
開發者ID:DingKe,項目名稱:attention-lvcsr,代碼行數:104,代碼來源:recognizer.py


注:本文中的blocks.search.BeamSearch.compile方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。