當前位置: 首頁>>代碼示例>>Python>>正文


Python GatedRecurrent.initialize方法代碼示例

本文整理匯總了Python中blocks.bricks.recurrent.GatedRecurrent.initialize方法的典型用法代碼示例。如果您正苦於以下問題:Python GatedRecurrent.initialize方法的具體用法?Python GatedRecurrent.initialize怎麽用?Python GatedRecurrent.initialize使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在blocks.bricks.recurrent.GatedRecurrent的用法示例。


在下文中一共展示了GatedRecurrent.initialize方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: example2

# 需要導入模塊: from blocks.bricks.recurrent import GatedRecurrent [as 別名]
# 或者: from blocks.bricks.recurrent.GatedRecurrent import initialize [as 別名]
def example2():
    """GRU"""
    x = tensor.tensor3('x')
    dim = 3

    fork = Fork(input_dim=dim, output_dims=[dim, dim*2],name='fork',output_names=["linear","gates"], weights_init=initialization.Identity(),biases_init=Constant(0))
    gru = GatedRecurrent(dim=dim, weights_init=initialization.Identity(),biases_init=Constant(0))

    fork.initialize()
    gru.initialize()

    linear, gate_inputs = fork.apply(x)
    h = gru.apply(linear, gate_inputs)

    f = theano.function([x], h)
    print(f(np.ones((dim, 1, dim), dtype=theano.config.floatX))) 

    doubler = Linear(
                 input_dim=dim, output_dim=dim, weights_init=initialization.Identity(2),
                 biases_init=initialization.Constant(0))
    doubler.initialize()

    lin, gate = fork.apply(doubler.apply(x))
    h_doubler = gru.apply(lin,gate)

    f = theano.function([x], h_doubler)
    print(f(np.ones((dim, 1, dim), dtype=theano.config.floatX))) 
開發者ID:DjAntaki,項目名稱:IFT6266H16,代碼行數:29,代碼來源:rnn_examples.py

示例2: TestGatedRecurrent

# 需要導入模塊: from blocks.bricks.recurrent import GatedRecurrent [as 別名]
# 或者: from blocks.bricks.recurrent.GatedRecurrent import initialize [as 別名]
class TestGatedRecurrent(unittest.TestCase):
    def setUp(self):
        self.gated = GatedRecurrent(
            dim=3, activation=Tanh(),
            gate_activation=Tanh(), weights_init=Constant(2))
        self.gated.initialize()
        self.reset_only = GatedRecurrent(
            dim=3, activation=Tanh(),
            gate_activation=Tanh(),
            weights_init=IsotropicGaussian(), seed=1)
        self.reset_only.initialize()

    def test_one_step(self):
        h0 = tensor.matrix('h0')
        x = tensor.matrix('x')
        gi = tensor.matrix('gi')
        h1 = self.gated.apply(x, gi, h0, iterate=False)
        next_h = theano.function(inputs=[h0, x, gi], outputs=[h1])

        h0_val = 0.1 * numpy.array([[1, 1, 0], [0, 1, 1]],
                                   dtype=theano.config.floatX)
        x_val = 0.1 * numpy.array([[1, 2, 3], [4, 5, 6]],
                                  dtype=theano.config.floatX)
        zi_val = (h0_val + x_val) / 2
        ri_val = -x_val
        W_val = 2 * numpy.ones((3, 3), dtype=theano.config.floatX)

        z_val = numpy.tanh(h0_val.dot(W_val) + zi_val)
        r_val = numpy.tanh(h0_val.dot(W_val) + ri_val)
        h1_val = (z_val * numpy.tanh((r_val * h0_val).dot(W_val) + x_val) +
                  (1 - z_val) * h0_val)
        assert_allclose(
            h1_val, next_h(h0_val, x_val, numpy.hstack([zi_val, ri_val]))[0],
            rtol=1e-6)

    def test_many_steps(self):
        x = tensor.tensor3('x')
        gi = tensor.tensor3('gi')
        mask = tensor.matrix('mask')
        h = self.reset_only.apply(x, gi, mask=mask)
        calc_h = theano.function(inputs=[x, gi, mask], outputs=[h])

        x_val = 0.1 * numpy.asarray(list(itertools.permutations(range(4))),
                                    dtype=theano.config.floatX)
        x_val = numpy.ones((24, 4, 3),
                           dtype=theano.config.floatX) * x_val[..., None]
        ri_val = 0.3 - x_val
        zi_val = 2 * ri_val
        mask_val = numpy.ones((24, 4), dtype=theano.config.floatX)
        mask_val[12:24, 3] = 0
        h_val = numpy.zeros((25, 4, 3), dtype=theano.config.floatX)
        W = self.reset_only.state_to_state.get_value()
        Wz = self.reset_only.state_to_gates.get_value()[:, :3]
        Wr = self.reset_only.state_to_gates.get_value()[:, 3:]

        for i in range(1, 25):
            z_val = numpy.tanh(h_val[i - 1].dot(Wz) + zi_val[i - 1])
            r_val = numpy.tanh(h_val[i - 1].dot(Wr) + ri_val[i - 1])
            h_val[i] = numpy.tanh((r_val * h_val[i - 1]).dot(W) +
                                  x_val[i - 1])
            h_val[i] = z_val * h_val[i] + (1 - z_val) * h_val[i - 1]
            h_val[i] = (mask_val[i - 1, :, None] * h_val[i] +
                        (1 - mask_val[i - 1, :, None]) * h_val[i - 1])
        h_val = h_val[1:]
        # TODO Figure out why this tolerance needs to be so big
        assert_allclose(
            h_val,
            calc_h(x_val, numpy.concatenate(
                [zi_val, ri_val], axis=2), mask_val)[0],
            1e-04)

        # Also test that initial state is a parameter
        initial_state, = VariableFilter(roles=[INITIAL_STATE])(
            ComputationGraph(h))
        assert is_shared_variable(initial_state)
        assert initial_state.name == 'initial_state'
開發者ID:ZhangAustin,項目名稱:attention-lvcsr,代碼行數:78,代碼來源:test_recurrent.py

示例3: TestGatedRecurrent

# 需要導入模塊: from blocks.bricks.recurrent import GatedRecurrent [as 別名]
# 或者: from blocks.bricks.recurrent.GatedRecurrent import initialize [as 別名]
class TestGatedRecurrent(unittest.TestCase):
    def setUp(self):
        self.gated = GatedRecurrent(
            dim=3, weights_init=Constant(2),
            activation=Tanh(), gate_activation=Tanh())
        self.gated.initialize()
        self.reset_only = GatedRecurrent(
            dim=3, weights_init=IsotropicGaussian(),
            activation=Tanh(), gate_activation=Tanh(),
            use_update_gate=False, seed=1)
        self.reset_only.initialize()

    def test_one_step(self):
        h0 = tensor.matrix('h0')
        x = tensor.matrix('x')
        z = tensor.matrix('z')
        r = tensor.matrix('r')
        h1 = self.gated.apply(x, z, r, h0, iterate=False)
        next_h = theano.function(inputs=[h0, x, z, r], outputs=[h1])

        h0_val = 0.1 * numpy.array([[1, 1, 0], [0, 1, 1]],
                                   dtype=floatX)
        x_val = 0.1 * numpy.array([[1, 2, 3], [4, 5, 6]],
                                  dtype=floatX)
        zi_val = (h0_val + x_val) / 2
        ri_val = -x_val
        W_val = 2 * numpy.ones((3, 3), dtype=floatX)

        z_val = numpy.tanh(h0_val.dot(W_val) + zi_val)
        r_val = numpy.tanh(h0_val.dot(W_val) + ri_val)
        h1_val = (z_val * numpy.tanh((r_val * h0_val).dot(W_val) + x_val) +
                  (1 - z_val) * h0_val)
        assert_allclose(h1_val, next_h(h0_val, x_val, zi_val, ri_val)[0],
                        rtol=1e-6)

    def test_reset_only_many_steps(self):
        x = tensor.tensor3('x')
        ri = tensor.tensor3('ri')
        mask = tensor.matrix('mask')
        h = self.reset_only.apply(x, reset_inputs=ri, mask=mask)
        calc_h = theano.function(inputs=[x, ri, mask], outputs=[h])

        x_val = 0.1 * numpy.asarray(list(itertools.permutations(range(4))),
                                    dtype=floatX)
        x_val = numpy.ones((24, 4, 3), dtype=floatX) * x_val[..., None]
        ri_val = 0.3 - x_val
        mask_val = numpy.ones((24, 4), dtype=floatX)
        mask_val[12:24, 3] = 0
        h_val = numpy.zeros((25, 4, 3), dtype=floatX)
        W = self.reset_only.state_to_state.get_value()
        U = self.reset_only.state_to_reset.get_value()

        for i in range(1, 25):
            r_val = numpy.tanh(h_val[i - 1].dot(U) + ri_val[i - 1])
            h_val[i] = numpy.tanh((r_val * h_val[i - 1]).dot(W) +
                                  x_val[i - 1])
            h_val[i] = (mask_val[i - 1, :, None] * h_val[i] +
                        (1 - mask_val[i - 1, :, None]) * h_val[i - 1])
        h_val = h_val[1:]
        # TODO Figure out why this tolerance needs to be so big
        assert_allclose(h_val, calc_h(x_val, ri_val,  mask_val)[0], 1e-03)
開發者ID:kelvinxu,項目名稱:blocks,代碼行數:63,代碼來源:test_recurrent.py

示例4: GatedRecurrentFull

# 需要導入模塊: from blocks.bricks.recurrent import GatedRecurrent [as 別名]
# 或者: from blocks.bricks.recurrent.GatedRecurrent import initialize [as 別名]
class GatedRecurrentFull(Initializable):
    """A wrapper around the GatedRecurrent brick that improves usability.
    It contains:
        * A fork to map to initialize the reset and the update units.
        * Better initialization to initialize the different pieces
    While this works, there is probably a better more elegant way to do this.

    Parameters
    ----------
    hidden_dim : int
        dimension of the hidden state
    activation : :class:`.Brick`
    gate_activation: :class:`.Brick`

    state_to_state_init: object
        Weight Initialization
    state_to_reset_init: object
        Weight Initialization
    state_to_update_init: obje64
        Weight Initialization

    input_to_state_transform: :class:`.Brick`
        [CvMG14] uses Linear transform
    input_to_reset_transform: :class:`.Brick`
        [CvMG14] uses Linear transform
    input_to_update_transform: :class:`.Brick`
        [CvMG14] uses Linear transform

    References
    ---------
        self.rnn = GatedRecurrent(
                weights_init=Constant(np.nan),
                dim=self.hidden_dim,
                activation=self.activation,
                gate_activation=self.gate_activation)
    .. [CvMG14] Kyunghyun Cho, Bart van Merriënboer, Çağlar Gülçehre,
        Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua
        Bengio, *Learning Phrase Representations using RNN Encoder-Decoder
        for Statistical Machine Translation*, EMNLP (2014), pp. 1724-1734.

    """
    @lazy(allocation=['hidden_dim', 'state_to_state_init', 'state_to_update_init', 'state_to_reset_init'],
            initialization=['input_to_state_transform', 'input_to_update_transform', 'input_to_reset_transform'])
    def __init__(self, hidden_dim, activation=None, gate_activation=None,
        state_to_state_init=None, state_to_update_init=None, state_to_reset_init=None,
        input_to_state_transform=None, input_to_update_transform=None, input_to_reset_transform=None,
        **kwargs):

        super(GatedRecurrentFull, self).__init__(**kwargs)
        self.hidden_dim = hidden_dim

        self.state_to_state_init = state_to_state_init
        self.state_to_update_init = state_to_update_init
        self.state_to_reset_init = state_to_reset_init

        self.input_to_state_transform = input_to_state_transform
        self.input_to_update_transform = input_to_update_transform
        self.input_to_reset_transform = input_to_reset_transform
        self.input_to_state_transform.name += "_input_to_state_transform"
        self.input_to_update_transform.name += "_input_to_update_transform"
        self.input_to_reset_transform.name += "_input_to_reset_transform"

        self.use_mine = True
        if self.use_mine:
            self.rnn = GatedRecurrentFast(
                    weights_init=Constant(np.nan),
                    dim=self.hidden_dim,
                    activation=activation,
                    gate_activation=gate_activation)
        else:
            self.rnn = GatedRecurrent(
                    weights_init=Constant(np.nan),
                    dim=self.hidden_dim,
                    activation=activation,
                    gate_activation=gate_activation)

        self.children = [self.rnn,
                self.input_to_state_transform, self.input_to_update_transform, self.input_to_reset_transform]
        self.children.extend(self.rnn.children)

    def initialize(self):
        super(GatedRecurrentFull, self).initialize()

        self.input_to_state_transform.initialize()
        self.input_to_update_transform.initialize()
        self.input_to_reset_transform.initialize()

        self.rnn.initialize()

        weight_shape = (self.hidden_dim, self.hidden_dim)
        state_to_state = self.state_to_state_init.generate(rng=self.rng, shape=weight_shape)
        state_to_update= self.state_to_update_init.generate(rng=self.rng, shape=weight_shape)
        state_to_reset = self.state_to_reset_init.generate(rng=self.rng, shape=weight_shape)

        self.rnn.state_to_state.set_value(state_to_state)

        if self.use_mine:
            self.rnn.state_to_update.set_value(state_to_update)
            self.rnn.state_to_reset.set_value(state_to_reset)
        else:
#.........這裏部分代碼省略.........
開發者ID:caomw,項目名稱:MLFun,代碼行數:103,代碼來源:bricks.py


注:本文中的blocks.bricks.recurrent.GatedRecurrent.initialize方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。