當前位置: 首頁>>代碼示例>>Python>>正文


Python recurrent.GatedRecurrent類代碼示例

本文整理匯總了Python中blocks.bricks.recurrent.GatedRecurrent的典型用法代碼示例。如果您正苦於以下問題:Python GatedRecurrent類的具體用法?Python GatedRecurrent怎麽用?Python GatedRecurrent使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了GatedRecurrent類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: gru_layer

def gru_layer(dim, h, n):
    fork = Fork(output_names=['linear' + str(n), 'gates' + str(n)],
                name='fork' + str(n), input_dim=dim, output_dims=[dim, dim * 2])
    gru = GatedRecurrent(dim=dim, name='gru' + str(n))
    initialize([fork, gru])
    linear, gates = fork.apply(h)
    return gru.apply(linear, gates)
開發者ID:ixtel,項目名稱:blocks-char-rnn,代碼行數:7,代碼來源:model.py

示例2: example2

def example2():
    """GRU"""
    x = tensor.tensor3('x')
    dim = 3

    fork = Fork(input_dim=dim, output_dims=[dim, dim*2],name='fork',output_names=["linear","gates"], weights_init=initialization.Identity(),biases_init=Constant(0))
    gru = GatedRecurrent(dim=dim, weights_init=initialization.Identity(),biases_init=Constant(0))

    fork.initialize()
    gru.initialize()

    linear, gate_inputs = fork.apply(x)
    h = gru.apply(linear, gate_inputs)

    f = theano.function([x], h)
    print(f(np.ones((dim, 1, dim), dtype=theano.config.floatX))) 

    doubler = Linear(
                 input_dim=dim, output_dim=dim, weights_init=initialization.Identity(2),
                 biases_init=initialization.Constant(0))
    doubler.initialize()

    lin, gate = fork.apply(doubler.apply(x))
    h_doubler = gru.apply(lin,gate)

    f = theano.function([x], h_doubler)
    print(f(np.ones((dim, 1, dim), dtype=theano.config.floatX))) 
開發者ID:DjAntaki,項目名稱:IFT6266H16,代碼行數:27,代碼來源:rnn_examples.py

示例3: setUp

 def setUp(self):
     self.gated = GatedRecurrent(
         dim=3, activation=Tanh(),
         gate_activation=Tanh(), weights_init=Constant(2))
     self.gated.initialize()
     self.reset_only = GatedRecurrent(
         dim=3, activation=Tanh(),
         gate_activation=Tanh(),
         weights_init=IsotropicGaussian(), seed=1)
     self.reset_only.initialize()
開發者ID:ZhangAustin,項目名稱:attention-lvcsr,代碼行數:10,代碼來源:test_recurrent.py

示例4: gru_layer

def gru_layer(dim, h, n):
    fork = Fork(
        output_names=["linear" + str(n), "gates" + str(n)],
        name="fork" + str(n),
        input_dim=dim,
        output_dims=[dim, dim * 2],
    )
    gru = GatedRecurrent(dim=dim, name="gru" + str(n))
    initialize([fork, gru])
    linear, gates = fork.apply(h)
    return gru.apply(linear, gates)
開發者ID:teganmaharaj,項目名稱:deeplearningclass,代碼行數:11,代碼來源:model.py

示例5: __init__

    def __init__(self, vocab_size, embedding_dim, state_dim, **kwargs):
        super(Encoder, self).__init__(**kwargs)
        self.vocab_size = vocab_size
        self.embedding_dim = embedding_dim
        self.state_dim = state_dim

        self.lookup = LookupTable(name='embeddings')
        self.GRU = GatedRecurrent(activation=Tanh(), dim=state_dim)
        self.children = [self.lookup, self.GRU]
開發者ID:guxiaodong1987,項目名稱:blocks-examples,代碼行數:9,代碼來源:simple.py

示例6: InnerRecurrent

class InnerRecurrent(BaseRecurrent, Initializable):
    def __init__(self, inner_input_dim, outer_input_dim, inner_dim, **kwargs):
        self.inner_gru = GatedRecurrent(dim=inner_dim, name='inner_gru')

        self.inner_input_fork = Fork(
            output_names=[name for name in self.inner_gru.apply.sequences
                          if 'mask' not in name],
            input_dim=inner_input_dim, name='inner_input_fork')
        self.outer_input_fork = Fork(
            output_names=[name for name in self.inner_gru.apply.sequences
                          if 'mask' not in name],
            input_dim=outer_input_dim, name='inner_outer_fork')

        super(InnerRecurrent, self).__init__(**kwargs)

        self.children = [
            self.inner_gru, self.inner_input_fork, self.outer_input_fork]

    def _push_allocation_config(self):
        self.inner_input_fork.output_dims = self.inner_gru.get_dims(
            self.inner_input_fork.output_names)
        self.outer_input_fork.output_dims = self.inner_gru.get_dims(
            self.outer_input_fork.output_names)

    @recurrent(sequences=['inner_inputs'], states=['states'],
               contexts=['outer_inputs'], outputs=['states'])
    def apply(self, inner_inputs, states, outer_inputs):
        forked_inputs = self.inner_input_fork.apply(inner_inputs, as_dict=True)
        forked_states = self.outer_input_fork.apply(outer_inputs, as_dict=True)

        gru_inputs = {key: forked_inputs[key] + forked_states[key]
                      for key in forked_inputs.keys()}

        new_states = self.inner_gru.apply(
            iterate=False,
            **dict_union(gru_inputs, {'states': states}))
        return new_states  # mean according to the time axis

    def get_dim(self, name):
        if name == 'states':
            return self.inner_gru.get_dim(name)
        else:
            return AttributeError
開發者ID:Beronx86,項目名稱:blocks,代碼行數:43,代碼來源:test_model.py

示例7: __init__

    def __init__(self, vocab_size, embedding_dim, state_dim, reverse=True,
                 **kwargs):
        super(Encoder, self).__init__(**kwargs)
        self.vocab_size = vocab_size
        self.embedding_dim = embedding_dim
        self.state_dim = state_dim
        self.reverse = reverse

        self.lookup = LookupTable(name='embeddings')
        self.transition = GatedRecurrent(Tanh(), name='encoder_transition')
        self.fork = Fork([name for name in self.transition.apply.sequences
                          if name != 'mask'], prototype=Linear())

        self.children = [self.lookup, self.transition, self.fork]
開發者ID:rizar,項目名稱:NMT,代碼行數:14,代碼來源:model_encdec.py

示例8: __init__

    def __init__(self, blockid, vocab_size, embedding_dim, state_dim, **kwargs):
        super(Encoder, self).__init__(**kwargs)
        self.vocab_size = vocab_size
        self.embedding_dim = embedding_dim
        self.state_dim = state_dim
        self.blockid = blockid

        self.lookup = LookupTable(name='embeddings' + '_' + self.blockid)
        self.gru = GatedRecurrent(activation=Tanh(), dim=state_dim, name = "GatedRNN" + self.blockid)
        self.fwd_fork = Fork(
            [name for name in self.gru.apply.sequences
             if name != 'mask'], prototype=Linear(), name='fwd_fork' + '_' + self.blockid)

        self.children = [self.lookup, self.gru, self.fwd_fork]
開發者ID:MtMoon,項目名稱:PoemProject,代碼行數:14,代碼來源:model.py

示例9: Encoder

class Encoder(Initializable):
    """Encoder of RNNsearch model."""

    def __init__(self, blockid, vocab_size, embedding_dim, state_dim, **kwargs):
        super(Encoder, self).__init__(**kwargs)
        self.vocab_size = vocab_size
        self.embedding_dim = embedding_dim
        self.state_dim = state_dim
        self.blockid = blockid

        self.lookup = LookupTable(name='embeddings' + '_' + self.blockid)
        self.gru = GatedRecurrent(activation=Tanh(), dim=state_dim, name = "GatedRNN" + self.blockid)
        self.fwd_fork = Fork(
            [name for name in self.gru.apply.sequences
             if name != 'mask'], prototype=Linear(), name='fwd_fork' + '_' + self.blockid)

        self.children = [self.lookup, self.gru, self.fwd_fork]

    def _push_allocation_config(self):
        self.lookup.length = self.vocab_size
        self.lookup.dim = self.embedding_dim

        self.fwd_fork.input_dim = self.embedding_dim
        self.fwd_fork.output_dims = [self.gru.get_dim(name)
                                     for name in self.fwd_fork.output_names]

    @application(inputs=['source_sentence', 'source_sentence_mask'],
                 outputs=['representation'])
    def apply(self, source_sentence, source_sentence_mask):
        # Time as first dimension
        source_sentence = source_sentence.T
        source_sentence_mask = source_sentence_mask.T

        embeddings = self.lookup.apply(source_sentence)
        grupara =  merge( self.fwd_fork.apply(embeddings, as_dict=True) , {'mask': source_sentence_mask})
        representation = self.gru.apply(**grupara)
        return representation
開發者ID:MtMoon,項目名稱:PoemProject,代碼行數:37,代碼來源:model.py

示例10: __init__

    def __init__(self, hidden_dim, activation=None, gate_activation=None,
        state_to_state_init=None, state_to_update_init=None, state_to_reset_init=None,
        input_to_state_transform=None, input_to_update_transform=None, input_to_reset_transform=None,
        **kwargs):

        super(GatedRecurrentFull, self).__init__(**kwargs)
        self.hidden_dim = hidden_dim

        self.state_to_state_init = state_to_state_init
        self.state_to_update_init = state_to_update_init
        self.state_to_reset_init = state_to_reset_init

        self.input_to_state_transform = input_to_state_transform
        self.input_to_update_transform = input_to_update_transform
        self.input_to_reset_transform = input_to_reset_transform
        self.input_to_state_transform.name += "_input_to_state_transform"
        self.input_to_update_transform.name += "_input_to_update_transform"
        self.input_to_reset_transform.name += "_input_to_reset_transform"

        self.use_mine = True
        if self.use_mine:
            self.rnn = GatedRecurrentFast(
                    weights_init=Constant(np.nan),
                    dim=self.hidden_dim,
                    activation=activation,
                    gate_activation=gate_activation)
        else:
            self.rnn = GatedRecurrent(
                    weights_init=Constant(np.nan),
                    dim=self.hidden_dim,
                    activation=activation,
                    gate_activation=gate_activation)

        self.children = [self.rnn,
                self.input_to_state_transform, self.input_to_update_transform, self.input_to_reset_transform]
        self.children.extend(self.rnn.children)
開發者ID:caomw,項目名稱:MLFun,代碼行數:36,代碼來源:bricks.py

示例11: GatedRecurrentWithContext

class GatedRecurrentWithContext(Initializable):
    def __init__(self, *args, **kwargs):
        self.gated_recurrent = GatedRecurrent(*args, **kwargs)
        self.children = [self.gated_recurrent]

    @application(states=['states'], outputs=['states'],
                 contexts=['readout_context', 'transition_context',
                           'update_context', 'reset_context'])
    def apply(self, transition_context, update_context, reset_context,
              *args, **kwargs):
        kwargs['inputs'] += transition_context
        kwargs['update_inputs'] += update_context
        kwargs['reset_inputs'] += reset_context
        # readout_context was only added for the Readout brick, discard it
        kwargs.pop('readout_context')
        return self.gated_recurrent.apply(*args, **kwargs)

    def get_dim(self, name):
        if name in ['readout_context', 'transition_context',
                    'update_context', 'reset_context']:
            return self.dim
        return self.gated_recurrent.get_dim(name)

    def __getattr__(self, name):
        if name == 'gated_recurrent':
            raise AttributeError
        return getattr(self.gated_recurrent, name)

    @apply.property('sequences')
    def apply_inputs(self):
        sequences = ['mask', 'inputs']
        if self.use_update_gate:
            sequences.append('update_inputs')
        if self.use_reset_gate:
            sequences.append('reset_inputs')
        return sequences
開發者ID:rizar,項目名稱:NMT,代碼行數:36,代碼來源:model_encdec.py

示例12: __init__

    def __init__(self, inner_input_dim, outer_input_dim, inner_dim, **kwargs):
        self.inner_gru = GatedRecurrent(dim=inner_dim, name='inner_gru')

        self.inner_input_fork = Fork(
            output_names=[name for name in self.inner_gru.apply.sequences
                          if 'mask' not in name],
            input_dim=inner_input_dim, name='inner_input_fork')
        self.outer_input_fork = Fork(
            output_names=[name for name in self.inner_gru.apply.sequences
                          if 'mask' not in name],
            input_dim=outer_input_dim, name='inner_outer_fork')

        super(InnerRecurrent, self).__init__(**kwargs)

        self.children = [
            self.inner_gru, self.inner_input_fork, self.outer_input_fork]
開發者ID:Beronx86,項目名稱:blocks,代碼行數:16,代碼來源:test_model.py

示例13: Encoder

class Encoder(Initializable):
    def __init__(self, vocab_size, embedding_dim, state_dim, reverse=True,
                 **kwargs):
        super(Encoder, self).__init__(**kwargs)
        self.vocab_size = vocab_size
        self.embedding_dim = embedding_dim
        self.state_dim = state_dim
        self.reverse = reverse

        self.lookup = LookupTable(name='embeddings')
        self.transition = GatedRecurrent(Tanh(), name='encoder_transition')
        self.fork = Fork([name for name in self.transition.apply.sequences
                          if name != 'mask'], prototype=Linear())

        self.children = [self.lookup, self.transition, self.fork]

    def _push_allocation_config(self):
        self.lookup.length = self.vocab_size
        self.lookup.dim = self.embedding_dim
        self.transition.dim = self.state_dim
        self.fork.input_dim = self.embedding_dim
        self.fork.output_dims = [self.state_dim
                                 for _ in self.fork.output_names]

    @application(inputs=['source_sentence', 'source_sentence_mask'],
                 outputs=['representation'])
    def apply(self, source_sentence, source_sentence_mask):
        # Time as first dimension
        source_sentence = source_sentence.dimshuffle(1, 0)
        source_sentence_mask = source_sentence_mask.T
        if self.reverse:
            source_sentence = source_sentence[::-1]
            source_sentence_mask = source_sentence_mask[::-1]

        embeddings = self.lookup.apply(source_sentence)
        representation = self.transition.apply(**merge(
            self.fork.apply(embeddings, as_dict=True),
            {'mask': source_sentence_mask}
        ))
        return representation[-1]
開發者ID:rizar,項目名稱:NMT,代碼行數:40,代碼來源:model_encdec.py

示例14: Encoder

class Encoder(Initializable):
    def __init__(self, vocab_size, embedding_dim, state_dim, **kwargs):
        super(Encoder, self).__init__(**kwargs)
        self.vocab_size = vocab_size
        self.embedding_dim = embedding_dim
        self.state_dim = state_dim

        self.lookup = LookupTable(name='embeddings')
        self.GRU = GatedRecurrent(activation=Tanh(), dim=state_dim)
        self.children = [self.lookup, self.GRU]

    def _push_allocation_config(self):
        self.lookup.length = self.vocab_size
        self.lookup.dim = self.embedding_dim

    @application(inputs=['source_sentence', 'source_sentence_mask'],
                 outputs=['representation'])
    def apply(self, source_sentence, source_sentence_mask):
        source_sentence = source_sentence.T
        source_sentence_mask = source_sentence_mask.T

        embeddings = self.lookup.apply(source_sentence)
        representation = self.GRU.apply(embeddings, embeddings)
        return representation
開發者ID:guxiaodong1987,項目名稱:blocks-examples,代碼行數:24,代碼來源:simple.py

示例15: main

def main():
    logging.basicConfig(
        level=logging.DEBUG,
        format="%(asctime)s: %(name)s: %(levelname)s: %(message)s")

    parser = argparse.ArgumentParser(
        "Case study of generating a Markov chain with RNN.",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument(
        "mode", choices=["train", "sample"],
        help="The mode to run. Use `train` to train a new model"
             " and `sample` to sample a sequence generated by an"
             " existing one.")
    parser.add_argument(
        "prefix", default="sine",
        help="The prefix for model, timing and state files")
    parser.add_argument(
        "--steps", type=int, default=100,
        help="Number of steps to plot")
    args = parser.parse_args()

    dim = 10
    num_states = ChainIterator.num_states
    feedback_dim = 8

    transition = GatedRecurrent(name="transition", activation=Tanh(), dim=dim)
    generator = SequenceGenerator(
        LinearReadout(readout_dim=num_states, source_names=["states"],
                      emitter=SoftmaxEmitter(name="emitter"),
                      feedbacker=LookupFeedback(
                          num_states, feedback_dim, name='feedback'),
                      name="readout"),
        transition,
        weights_init=IsotropicGaussian(0.01), biases_init=Constant(0),
        name="generator")
    generator.allocate()
    logger.debug("Parameters:\n" +
                 pprint.pformat(
                     [(key, value.get_value().shape) for key, value
                      in Selector(generator).get_params().items()],
                     width=120))

    if args.mode == "train":
        rng = numpy.random.RandomState(1)
        batch_size = 50

        generator.push_initialization_config()
        transition.weights_init = Orthogonal()
        generator.initialize()
        logger.debug("transition.weights_init={}".format(
            transition.weights_init))

        cost = generator.cost(tensor.lmatrix('x')).sum()
        gh_model = GroundhogModel(generator, cost)
        state = GroundhogState(args.prefix, batch_size,
                               learning_rate=0.0001).as_dict()
        data = ChainIterator(rng, 100, batch_size)
        trainer = SGD(gh_model, state, data)
        main_loop = MainLoop(data, None, None, gh_model, trainer, state, None)
        main_loop.main()
    elif args.mode == "sample":
        load_params(generator,  args.prefix + "model.npz")

        sample = ComputationGraph(generator.generate(
            n_steps=args.steps, batch_size=1, iterate=True)).function()

        states, outputs, costs = [data[:, 0] for data in sample()]

        numpy.set_printoptions(precision=3, suppress=True)
        print("Generation cost:\n{}".format(costs.sum()))

        freqs = numpy.bincount(outputs).astype(floatX)
        freqs /= freqs.sum()
        print("Frequencies:\n {} vs {}".format(freqs,
                                               ChainIterator.equilibrium))

        trans_freqs = numpy.zeros((num_states, num_states), dtype=floatX)
        for a, b in zip(outputs, outputs[1:]):
            trans_freqs[a, b] += 1
        trans_freqs /= trans_freqs.sum(axis=1)[:, None]
        print("Transition frequencies:\n{}\nvs\n{}".format(
            trans_freqs, ChainIterator.trans_prob))
    else:
        assert False
開發者ID:madisonmay,項目名稱:blocks,代碼行數:84,代碼來源:markov_chain.py


注:本文中的blocks.bricks.recurrent.GatedRecurrent類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。