當前位置: 首頁>>代碼示例>>Python>>正文


Python GraphArtist.set_xlabel方法代碼示例

本文整理匯總了Python中artist.GraphArtist.set_xlabel方法的典型用法代碼示例。如果您正苦於以下問題:Python GraphArtist.set_xlabel方法的具體用法?Python GraphArtist.set_xlabel怎麽用?Python GraphArtist.set_xlabel使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在artist.GraphArtist的用法示例。


在下文中一共展示了GraphArtist.set_xlabel方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: plot_arrival_times

# 需要導入模塊: from artist import GraphArtist [as 別名]
# 或者: from artist.GraphArtist import set_xlabel [as 別名]
def plot_arrival_times():
    graph = GraphArtist()

    figure()
    sim = data.root.showers.E_1PeV.zenith_22_5
    t = get_front_arrival_time(sim, 20, 5, pi / 8)
    n, bins = histogram(t, bins=linspace(0, 50, 201))
    mct = monte_carlo_timings(n, bins, 100000)
    n, bins, patches = hist(mct, bins=linspace(0, 20, 101), histtype='step')
    graph.histogram(n, bins, linestyle='black!50')

    mint = my_t_draw_something(data, 2, 100000)
    n, bins, patches = hist(mint, bins=linspace(0, 20, 101), histtype='step')
    graph.histogram(n, bins)

    xlabel("Arrival time [ns]")
    ylabel("Number of events")

    graph.set_xlabel(r"Arrival time [\si{\nano\second}]")
    graph.set_ylabel("Number of events")
    graph.set_xlimits(0, 20)
    graph.set_ylimits(min=0)
    graph.save('plots/SIM-T')

    print(median(t), median(mct), median(mint))
開發者ID:HiSPARC,項目名稱:sapphire,代碼行數:27,代碼來源:myshowerfront.py

示例2: plot_uncertainty_core_distance

# 需要導入模塊: from artist import GraphArtist [as 別名]
# 或者: from artist.GraphArtist import set_xlabel [as 別名]
def plot_uncertainty_core_distance(table):
    N = 2
    THETA = deg2rad(22.5)
    DTHETA = deg2rad(5.)
    DN = .5
    DR = 10
    LOGENERGY = 15
    DLOGENERGY = .5

    figure()
    x, y, y2 = [], [], []
    for R in range(0, 81, 20):
        x.append(R)
        events = table.read_where('(abs(min_n134 - N) <= DN) & (abs(reference_theta - THETA) <= DTHETA) & (abs(r - R) <= DR) & (abs(log10(k_energy) - LOGENERGY) <= DLOGENERGY)')
        print(len(events),)
        errors = events['reference_theta'] - events['reconstructed_theta']
        # Make sure -pi < errors < pi
        errors = (errors + pi) % (2 * pi) - pi
        errors2 = events['reference_phi'] - events['reconstructed_phi']
        # Make sure -pi < errors2 < pi
        errors2 = (errors2 + pi) % (2 * pi) - pi
        #y.append(std(errors))
        #y2.append(std(errors2))
        y.append((scoreatpercentile(errors, 83) - scoreatpercentile(errors, 17)) / 2)
        y2.append((scoreatpercentile(errors2, 83) - scoreatpercentile(errors2, 17)) / 2)

    print()
    print("R: theta_std, phi_std")
    for u, v, w in zip(x, y, y2):
        print(u, v, w)
    print()

#    # Simulation data
    sx, sy, sy2 = loadtxt(os.path.join(DATADIR, 'DIR-plot_uncertainty_core_distance.txt'))

    graph = GraphArtist()

    # Plots
    plot(x, rad2deg(y), '^-', label="Theta")
    graph.plot(x[:-1], rad2deg(y[:-1]), mark='o')
    plot(sx, rad2deg(sy), '^-', label="Theta (sim)")
    graph.plot(sx[:-1], rad2deg(sy[:-1]), mark='square')
    plot(x, rad2deg(y2), 'v-', label="Phi")
    graph.plot(x[:-1], rad2deg(y2[:-1]), mark='*')
    plot(sx, rad2deg(sy2), 'v-', label="Phi (sim)")
    graph.plot(sx[:-1], rad2deg(sy2[:-1]), mark='square*')

    # Labels etc.
    xlabel("Core distance [m] $\pm %d$" % DR)
    graph.set_xlabel(r"Core distance [\si{\meter}] $\pm \SI{%d}{\meter}$" % DR)
    ylabel("Angle reconstruction uncertainty [deg]")
    graph.set_ylabel(r"Angle reconstruction uncertainty [\si{\degree}]")
    title(r"$N_{MIP} = %d \pm %.1f, \theta = 22.5^\circ \pm %d^\circ, %.1f \leq \log(E) \leq %.1f$" % (N, DN, rad2deg(DTHETA), LOGENERGY - DLOGENERGY, LOGENERGY + DLOGENERGY))
    ylim(ymin=0)
    graph.set_ylimits(min=0)
    xlim(-2, 62)
    legend(numpoints=1, loc='best')
    utils.saveplot()
    artist.utils.save_graph(graph, dirname='plots')
    print
開發者ID:HiSPARC,項目名稱:sapphire,代碼行數:62,代碼來源:direction_reconstruction.py

示例3: plot_trace

# 需要導入模塊: from artist import GraphArtist [as 別名]
# 或者: from artist.GraphArtist import set_xlabel [as 別名]
def plot_trace(station_group, idx):
    events = station_group.events
    blobs = station_group.blobs

    traces_idx = events[idx]['traces']
    traces = get_traces(blobs, traces_idx)
    traces = array(traces)
    x = arange(traces.shape[1])
    x *= 2.5

    clf()
    plot(x, traces.T)
    xlim(0, 200)

    #line_styles = ['solid', 'dashed', 'dotted', 'dashdotted']
    line_styles = ['black', 'black!80', 'black!60', 'black!40']
    styles = (u for u in line_styles)

    graph = GraphArtist(width=r'.5\linewidth')
    for trace in traces:
        graph.plot(x, trace / 1000, mark=None, linestyle=styles.next())
    graph.set_xlabel(r"Time [\si{\nano\second}]")
    graph.set_ylabel(r"Signal [\si{\volt}]")
    graph.set_xlimits(0, 200)
    graph.save('plots/traces')
開發者ID:pombredanne,項目名稱:sapphire,代碼行數:27,代碼來源:plot_trace.py

示例4: plot_fsot_vs_lint_for_zenith

# 需要導入模塊: from artist import GraphArtist [as 別名]
# 或者: from artist.GraphArtist import set_xlabel [as 別名]
def plot_fsot_vs_lint_for_zenith(fsot, lint):
    bins = linspace(0, 35, 21)

    min_N = 1

    x, f_y, f_y2, l_y, l_y2 = [], [], [], [], []
    for low, high in zip(bins[:-1], bins[1:]):
        rad_low = deg2rad(low)
        rad_high = deg2rad(high)

        query = '(min_n134 >= min_N) & (rad_low <= reference_theta) & (reference_theta < rad_high)'
        f_sel = fsot.read_where(query)
        l_sel = lint.read_where(query)

        errors = f_sel['reconstructed_phi'] - f_sel['reference_phi']
        errors2 = f_sel['reconstructed_theta'] - f_sel['reference_theta']
        #f_y.append(std(errors))
        #f_y2.append(std(errors2))
        f_y.append((scoreatpercentile(errors, 83) - scoreatpercentile(errors, 17)) / 2)
        f_y2.append((scoreatpercentile(errors2, 83) - scoreatpercentile(errors2, 17)) / 2)

        errors = l_sel['reconstructed_phi'] - l_sel['reference_phi']
        errors2 = l_sel['reconstructed_theta'] - l_sel['reference_theta']
        #l_y.append(std(errors))
        #l_y2.append(std(errors2))
        l_y.append((scoreatpercentile(errors, 83) - scoreatpercentile(errors, 17)) / 2)
        l_y2.append((scoreatpercentile(errors2, 83) - scoreatpercentile(errors2, 17)) / 2)

        x.append((low + high) / 2)

        print(x[-1], len(f_sel), len(l_sel))

    clf()
    plot(x, rad2deg(f_y), label="FSOT phi")
    plot(x, rad2deg(f_y2), label="FSOT theta")
    plot(x, rad2deg(l_y), label="LINT phi")
    plot(x, rad2deg(l_y2), label="LINT theta")
    legend()
    xlabel("Shower zenith angle [deg]")
    ylabel("Angle reconstruction uncertainty [deg]")
    title(r"$N_{MIP} \geq %d$" % min_N)
    utils.saveplot()

    graph = GraphArtist()
    graph.plot(x, rad2deg(f_y), mark=None)
    graph.plot(x, rad2deg(l_y), mark=None, linestyle='dashed')
    graph.plot(x, rad2deg(f_y2), mark=None)
    graph.plot(x, rad2deg(l_y2), mark=None, linestyle='dashed')
    graph.set_xlabel(r"Shower zenith angle [\si{\degree}]")
    graph.set_ylabel(r"Angle reconstruction uncertainty [\si{\degree}]")
    artist.utils.save_graph(graph, dirname='plots')
開發者ID:HiSPARC,項目名稱:sapphire,代碼行數:53,代碼來源:direction_reconstruction.py

示例5: boxplot_arrival_times

# 需要導入模塊: from artist import GraphArtist [as 別名]
# 或者: from artist.GraphArtist import set_xlabel [as 別名]
def boxplot_arrival_times(group, N):
    table = group.E_1PeV.zenith_0

    sel = table.read_where('min_n134 >= N')
    t1 = sel[:]['t1']
    t3 = sel[:]['t3']
    t4 = sel[:]['t4']
    ts = concatenate([t1, t3, t4])
    print "Median arrival time delay over all detected events", median(ts)

    figure()

    bin_edges = linspace(0, 100, 11)
    x, arrival_times = [], []
    t25, t50, t75 = [], [], []
    for low, high in zip(bin_edges[:-1], bin_edges[1:]):
        query = '(min_n134 >= N) & (low <= r) & (r < high)'
        sel = table.read_where(query)
        t1 = sel[:]['t1']
        t2 = sel[:]['t2']
        ct1 = t1.compress((t1 > -999) & (t2 > -999))
        ct2 = t2.compress((t1 > -999) & (t2 > -999))
        ts = abs(ct2 - ct1)

        t25.append(scoreatpercentile(ts, 25))
        t50.append(scoreatpercentile(ts, 50))
        t75.append(scoreatpercentile(ts, 75))
        x.append((low + high) / 2)

    fill_between(x, t25, t75, color='0.75')
    plot(x, t50, 'o-', color='black')

    xlabel("Core distance [m]")
    ylabel("Arrival time delay [ns]")
    #title(r"$N_{MIP} \geq %d, \quad \theta = 0^\circ$" % N)

    xticks(arange(0, 100.5, 10))

    utils.savedata((x, t25, t50, t75), N)
    utils.saveplot(N)

    graph = GraphArtist()
    graph.shade_region(x, t25, t75)
    graph.plot(x, t50, linestyle=None)
    graph.set_xlabel(r"Core distance [\si{\meter}]")
    graph.set_ylabel(r"Arrival time difference $|t_2 - t_1|$ [\si{\nano\second}]")
    graph.set_xlimits(0, 100)
    graph.set_ylimits(min=0)
    artist.utils.save_graph(graph, suffix=N, dirname='plots')
開發者ID:OpenCosmics,項目名稱:sapphire,代碼行數:51,代碼來源:direction_reconstruction.py

示例6: plot_uncertainty_zenith_angular_distance

# 需要導入模塊: from artist import GraphArtist [as 別名]
# 或者: from artist.GraphArtist import set_xlabel [as 別名]
def plot_uncertainty_zenith_angular_distance(group):
    group = group.E_1PeV
    rec = DirectionReconstruction

    N = 2

    # constants for uncertainty estimation
    # BEWARE: stations must be the same over all reconstruction tables used
    station = group.zenith_0.attrs.cluster.stations[0]
    r1, phi1 = station.calc_r_and_phi_for_detectors(1, 3)
    r2, phi2 = station.calc_r_and_phi_for_detectors(1, 4)

    figure()
    graph = GraphArtist()
    # Uncertainty estimate
    x = linspace(0, deg2rad(45), 50)
    #x = array([pi / 8])
    phis = linspace(-pi, pi, 50)
    y, y2 = [], []
    for t in x:
        y.append(mean(rec.rel_phi_errorsq(t, phis, phi1, phi2, r1, r2)))
        y2.append(mean(rec.rel_theta1_errorsq(t, phis, phi1, phi2, r1, r2)))
    y = TIMING_ERROR * sqrt(array(y))
    y2 = TIMING_ERROR * sqrt(array(y2))
    ang_dist = sqrt((y * sin(x)) ** 2 + y2 ** 2)
    #plot(rad2deg(x), rad2deg(y), label="Estimate Phi")
    #plot(rad2deg(x), rad2deg(y2), label="Estimate Theta")
    plot(rad2deg(x), rad2deg(ang_dist), label="Angular distance")
    graph.plot(rad2deg(x), rad2deg(ang_dist), mark=None)
    print rad2deg(x)
    print rad2deg(y)
    print rad2deg(y2)
    print rad2deg(y * sin(x))
    print rad2deg(ang_dist)

    # Labels etc.
    xlabel("Shower zenith angle [deg]")
    ylabel("Angular distance [deg]")
    graph.set_xlabel(r"Shower zenith angle [\si{\degree}]")
    graph.set_ylabel(r"Angular distance [\si{\degree}]")
    graph.set_ylimits(min=6)
    #title(r"$N_{MIP} \geq %d$" % N)
    #ylim(0, 100)
    #legend(numpoints=1)
    utils.saveplot()
    artist.utils.save_graph(graph, dirname='plots')
    print
開發者ID:OpenCosmics,項目名稱:sapphire,代碼行數:49,代碼來源:direction_reconstruction.py

示例7: boxplot_phi_reconstruction_results_for_MIP

# 需要導入模塊: from artist import GraphArtist [as 別名]
# 或者: from artist.GraphArtist import set_xlabel [as 別名]
def boxplot_phi_reconstruction_results_for_MIP(group, N):
    table = group.E_1PeV.zenith_22_5

    figure()

    bin_edges = linspace(-180, 180, 18)
    x, r_dphi = [], []
    d25, d50, d75 = [], [], []
    for low, high in zip(bin_edges[:-1], bin_edges[1:]):
        rad_low = deg2rad(low)
        rad_high = deg2rad(high)
        query = '(min_n134 >= N) & (rad_low < reference_phi) & (reference_phi < rad_high)'
        sel = table.read_where(query)
        dphi = sel[:]['reconstructed_phi'] - sel[:]['reference_phi']
        dphi = (dphi + pi) % (2 * pi) - pi
        r_dphi.append(rad2deg(dphi))

        d25.append(scoreatpercentile(rad2deg(dphi), 25))
        d50.append(scoreatpercentile(rad2deg(dphi), 50))
        d75.append(scoreatpercentile(rad2deg(dphi), 75))
        x.append((low + high) / 2)

    fill_between(x, d25, d75, color='0.75')
    plot(x, d50, 'o-', color='black')

    xlabel(r"$\phi_{simulated}$ [deg]")
    ylabel(r"$\phi_{reconstructed} - \phi_{simulated}$ [deg]")
    #title(r"$N_{MIP} \geq %d, \quad \theta = 22.5^\circ$" % N)

    xticks(linspace(-180, 180, 9))
    axhline(0, color='black')
    ylim(-15, 15)

    utils.saveplot(N)

    graph = GraphArtist()
    graph.draw_horizontal_line(0, linestyle='gray')
    graph.shade_region(x, d25, d75)
    graph.plot(x, d50, linestyle=None)
    graph.set_xlabel(r"$\phi_\mathrm{sim}$ [\si{\degree}]")
    graph.set_ylabel(r"$\phi_\mathrm{rec} - \phi_\mathrm{sim}$ [\si{\degree}]")
    graph.set_title(r"$N_\mathrm{MIP} \geq %d$" % N)
    graph.set_xticks([-180, -90, '...', 180])
    graph.set_xlimits(-180, 180)
    graph.set_ylimits(-17, 17)
    artist.utils.save_graph(graph, suffix=N, dirname='plots')
開發者ID:OpenCosmics,項目名稱:sapphire,代碼行數:48,代碼來源:direction_reconstruction.py

示例8: plot_detection_efficiency_vs_R_for_angles

# 需要導入模塊: from artist import GraphArtist [as 別名]
# 或者: from artist.GraphArtist import set_xlabel [as 別名]
def plot_detection_efficiency_vs_R_for_angles(N):
    figure()
    graph = GraphArtist()
    locations = iter(['right', 'left', 'below left'])
    positions = iter([.18, .14, .15])

    bin_edges = linspace(0, 100, 20)
    x = (bin_edges[:-1] + bin_edges[1:]) / 2.

    for angle in [0, 22.5, 35]:
        angle_str = str(angle).replace('.', '_')
        shower_group = '/simulations/E_1PeV/zenith_%s' % angle_str

        efficiencies = []
        for low, high in zip(bin_edges[:-1], bin_edges[1:]):
            shower_results = []
            for shower in data.list_nodes(shower_group):
                sel_query = '(low <= r) & (r < high)'
                coinc_sel = shower.coincidences.read_where(sel_query)
                ids = coinc_sel['id']
                obs_sel = shower.observables.read_coordinates(ids)
                assert (obs_sel['id'] == ids).all()

                o = obs_sel
                sel = obs_sel.compress((o['n1'] >= N) & (o['n3'] >= N) &
                                       (o['n4'] >= N))
                shower_results.append(len(sel) / len(obs_sel))
            efficiencies.append(mean(shower_results))

        plot(x, efficiencies, label=r'$\theta = %s^\circ$' % angle)
        graph.plot(x, efficiencies, mark=None)
        graph.add_pin(r'\SI{%s}{\degree}' % angle,
                      location=locations.next(), use_arrow=True,
                      relative_position=positions.next())

    xlabel("Core distance [m]")
    graph.set_xlabel(r"Core distance [\si{\meter}]")
    ylabel("Detection efficiency")
    graph.set_ylabel("Detection efficiency")
    #title(r"$N_{MIP} \geq %d$" % N)
    legend()
    graph.set_xlimits(0, 100)
    graph.set_ylimits(0, 1)

    utils.saveplot(N)
    artist.utils.save_graph(graph, suffix=N, dirname='plots')
開發者ID:OpenCosmics,項目名稱:sapphire,代碼行數:48,代碼來源:direction_reconstruction.py

示例9: boxplot_phi_reconstruction_results_for_MIP

# 需要導入模塊: from artist import GraphArtist [as 別名]
# 或者: from artist.GraphArtist import set_xlabel [as 別名]
def boxplot_phi_reconstruction_results_for_MIP(table, N):
    figure()

    THETA = deg2rad(22.5)
    DTHETA = deg2rad(5.)

    bin_edges = linspace(-180, 180, 18)
    x, r_dphi = [], []
    d25, d50, d75 = [], [], []
    for low, high in zip(bin_edges[:-1], bin_edges[1:]):
        rad_low = deg2rad(low)
        rad_high = deg2rad(high)
        query = '(min_n134 >= N) & (rad_low < reference_phi) & (reference_phi < rad_high) & (abs(reference_theta - THETA) <= DTHETA)'
        sel = table.read_where(query)
        dphi = sel[:]['reconstructed_phi'] - sel[:]['reference_phi']
        dphi = (dphi + pi) % (2 * pi) - pi
        r_dphi.append(rad2deg(dphi))

        d25.append(scoreatpercentile(rad2deg(dphi), 25))
        d50.append(scoreatpercentile(rad2deg(dphi), 50))
        d75.append(scoreatpercentile(rad2deg(dphi), 75))
        x.append((low + high) / 2)

    #boxplot(r_dphi, positions=x, widths=1 * (high - low), sym='')
    fill_between(x, d25, d75, color='0.75')
    plot(x, d50, 'o-', color='black')

    xlabel(r"$\phi_K$ [deg]")
    ylabel(r"$\phi_H - \phi_K$ [deg]")
    title(r"$N_{MIP} \geq %d, \quad \theta = 22.5^\circ \pm %d^\circ$" % (N, rad2deg(DTHETA)))

    xticks(linspace(-180, 180, 9))
    axhline(0, color='black')

    utils.saveplot(N)

    graph = GraphArtist()
    graph.draw_horizontal_line(0, linestyle='gray')
    graph.shade_region(x, d25, d75)
    graph.plot(x, d50, linestyle=None)
    graph.set_xlabel(r"$\phi_K$ [\si{\degree}]")
    graph.set_ylabel(r"$\phi_H - \phi_K$ [\si{\degree}]")
    graph.set_xticks([-180, -90, '...', 180])
    graph.set_xlimits(-180, 180)
    graph.set_ylimits(-23, 23)
    artist.utils.save_graph(graph, suffix=N, dirname='plots')
開發者ID:HiSPARC,項目名稱:sapphire,代碼行數:48,代碼來源:direction_reconstruction.py

示例10: plot_detection_efficiency

# 需要導入模塊: from artist import GraphArtist [as 別名]
# 或者: from artist.GraphArtist import set_xlabel [as 別名]
    def plot_detection_efficiency(self):
        integrals, dens = self.get_integrals_and_densities()

        popt = self.full_fit_on_data(integrals,
                                      (1., 1., 5e3 / .32, 3.38 / 5000, 1.))

        x, y, yerr = [], [], []
        dens_bins = np.linspace(0, 10, 51)
        for low, high in zip(dens_bins[:-1], dens_bins[1:]):
            sel = integrals.compress((low <= dens) & (dens < high))
            x.append((low + high) / 2)
            frac = self.determine_charged_fraction(sel, popt)
            y.append(frac)
            yerr.append(np.sqrt(frac * len(sel)) / len(sel))
            print (low + high) / 2, len(sel)
            self.plot_full_spectrum_fit_in_density_range(sel, popt, low, high)
        print

        plt.figure()
        plt.errorbar(x, y, yerr, fmt='o', label='data', markersize=3.)

        popt, pcov = optimize.curve_fit(self.conv_p_detection, x, y, p0=(1.,))
        print "Sigma Gauss:", popt

        x2 = plt.linspace(0, 10, 101)
        plt.plot(x2, self.p_detection(x2), label='poisson')
        plt.plot(x2, self.conv_p_detection(x2, *popt), label='poisson/gauss')

        plt.xlabel("Charged particle density [$m^{-2}$]")
        plt.ylabel("Detection probability")
        plt.ylim(0, 1.)
        plt.legend(loc='best')
        utils.saveplot()

        graph = GraphArtist()
        graph.plot(x2, self.p_detection(x2), mark=None)
        graph.plot(x2, self.conv_p_detection(x2, *popt), mark=None,
                   linestyle='dashed')
        graph.plot(x, y, yerr=yerr, linestyle=None)
        graph.set_xlabel(
            r"Charged particle density [\si{\per\square\meter}]")
        graph.set_ylabel("Detection probability")
        graph.set_xlimits(min=0)
        graph.set_ylimits(min=0)
        artist.utils.save_graph(graph, dirname='plots')
開發者ID:OpenCosmics,項目名稱:sapphire,代碼行數:47,代碼來源:reconstruction_efficiency.py

示例11: plot_nearest_neighbors

# 需要導入模塊: from artist import GraphArtist [as 別名]
# 或者: from artist.GraphArtist import set_xlabel [as 別名]
def plot_nearest_neighbors(data, limit=None):
    global coincidences
    hisparc_group = data.root.hisparc.cluster_kascade.station_601
    kascade_group = data.root.kascade

    coincidences = KascadeCoincidences(data, hisparc_group, kascade_group,
                                       ignore_existing=True)

    #dt_opt = find_optimum_dt(coincidences, p0=-13, limit=1000)
    #print dt_opt

    graph = GraphArtist(axis='semilogy')
    styles = iter(['solid', 'dashed', 'dashdotted'])

    uncorrelated = None
    figure()
    #for shift in -12, -13, dt_opt, -14:
    for shift in -12, -13, -14:
        print "Shifting", shift
        coincidences.search_coincidences(shift, dtlimit=1, limit=limit)
        print "."
        dts = coincidences.coincidences['dt']
        n, bins, p = hist(abs(dts) / 1e9, bins=linspace(0, 1, 101),
                          histtype='step', label='%.3f s' % shift)
        n = [u if u else 1e-99 for u in n]
        graph.histogram(n, bins, linestyle=styles.next() + ',gray')
        if uncorrelated is None:
            uncorrelated = n, bins

    y, bins = uncorrelated
    x = (bins[:-1] + bins[1:]) / 2
    f = lambda x, N, a: N * exp(-a * x)
    popt, pcov = curve_fit(f, x, y)
    plot(x, f(x, *popt), label=r"$\lambda = %.2f$ Hz" % popt[1])
    graph.plot(x, f(x, *popt), mark=None)

    yscale('log')
    xlabel("Time difference [s]")
    graph.set_xlabel(r"Time difference [\si{\second}]")
    ylabel("Counts")
    graph.set_ylabel("Counts")
    legend()
    graph.set_ylimits(min=10)
    utils.saveplot()
    graph.save('plots/MAT-nearest-neighbors')
開發者ID:OpenCosmics,項目名稱:sapphire,代碼行數:47,代碼來源:plot_matching_events.py

示例12: boxplot_theta_reconstruction_results_for_MIP

# 需要導入模塊: from artist import GraphArtist [as 別名]
# 或者: from artist.GraphArtist import set_xlabel [as 別名]
def boxplot_theta_reconstruction_results_for_MIP(table, N):
    figure()

    DTHETA = deg2rad(1.)

    angles = [0, 5, 10, 15, 22.5, 35]
    r_dtheta = []
    x = []
    d25, d50, d75 = [], [], []
    for angle in angles:
        theta = deg2rad(angle)
        sel = table.read_where('(min_n134 >= N) & (abs(reference_theta - theta) <= DTHETA)')
        dtheta = rad2deg(sel[:]['reconstructed_theta'] - sel[:]['reference_theta'])
        r_dtheta.append(dtheta)

        d25.append(scoreatpercentile(dtheta, 25))
        d50.append(scoreatpercentile(dtheta, 50))
        d75.append(scoreatpercentile(dtheta, 75))
        x.append(angle)

    #boxplot(r_dtheta, sym='', positions=angles, widths=2.)
    fill_between(x, d25, d75, color='0.75')
    plot(x, d50, 'o-', color='black')

    xlabel(r"$\theta_K$ [deg]")
    ylabel(r"$\theta_H - \theta_K$ [deg]")
    title(r"$N_{MIP} \geq %d$" % N)

    axhline(0, color='black')
    ylim(-20, 25)
    xlim(0, 35)

    utils.saveplot(N)

    graph = GraphArtist()
    graph.draw_horizontal_line(0, linestyle='gray')
    graph.shade_region(angles, d25, d75)
    graph.plot(angles, d50, linestyle=None)
    graph.set_xlabel(r"$\theta_K$ [\si{\degree}]")
    graph.set_ylabel(r"$\theta_H - \theta_K$ [\si{\degree}]")
    graph.set_ylimits(-5, 15)
    artist.utils.save_graph(graph, suffix=N, dirname='plots')
開發者ID:HiSPARC,項目名稱:sapphire,代碼行數:44,代碼來源:direction_reconstruction.py

示例13: plot_front_passage

# 需要導入模塊: from artist import GraphArtist [as 別名]
# 或者: from artist.GraphArtist import set_xlabel [as 別名]
def plot_front_passage():
    sim = data.root.showers.E_1PeV.zenith_0.shower_0
    leptons = sim.leptons
    R = 40
    dR = 2
    low = R - dR
    high = R + dR
    global t
    t = leptons.read_where('(low < core_distance) & (core_distance <= high)',
                          field='arrival_time')

    n, bins, patches = hist(t, bins=linspace(0, 30, 31), histtype='step')

    graph = GraphArtist()
    graph.histogram(n, bins)
    graph.set_xlabel(r"Arrival time [\si{\nano\second}]")
    graph.set_ylabel("Number of leptons")
    graph.set_ylimits(min=0)
    graph.set_xlimits(0, 30)
    graph.save('plots/front-passage')
開發者ID:OpenCosmics,項目名稱:sapphire,代碼行數:22,代碼來源:analyze_shower_front.py

示例14: artistplot_reconstruction_efficiency_vs_R_for_angles

# 需要導入模塊: from artist import GraphArtist [as 別名]
# 或者: from artist.GraphArtist import set_xlabel [as 別名]
def artistplot_reconstruction_efficiency_vs_R_for_angles(N):
    filename = 'DIR-plot_reconstruction_efficiency_vs_R_for_angles-%d.txt' % N
    all_data = loadtxt(os.path.join('plots/', filename))

    graph = GraphArtist()
    locations = iter(['above right', 'below left', 'below left'])
    positions = iter([.9, .2, .2])

    x = all_data[:, 0]

    for angle, efficiencies in zip([0, 22.5, 35], all_data[:, 1:].T):
        graph.plot(x, efficiencies, mark=None)
        graph.add_pin(r'\SI{%s}{\degree}' % angle, use_arrow=True,
                      location=locations.next(),
                      relative_position=positions.next())

    graph.set_xlabel("Core distance [\si{\meter}]")
    graph.set_ylabel("Reconstruction efficiency")
    graph.set_xlimits(0, 100)
    graph.set_ylimits(max=1)
    artist.utils.save_graph(graph, suffix=N, dirname='plots')
開發者ID:OpenCosmics,項目名稱:sapphire,代碼行數:23,代碼來源:direction_reconstruction.py

示例15: plot_gamma_landau_fit

# 需要導入模塊: from artist import GraphArtist [as 別名]
# 或者: from artist.GraphArtist import set_xlabel [as 別名]
    def plot_gamma_landau_fit(self):
        events = self.data.root.hisparc.cluster_kascade.station_601.events
        ph0 = events.col('integrals')[:, 0]

        bins = np.linspace(0, RANGE_MAX, N_BINS + 1)
        n, bins = np.histogram(ph0, bins=bins)
        x = (bins[:-1] + bins[1:]) / 2

        p_gamma, p_landau = self.full_spectrum_fit(x, n, (1., 1.),
                                                   (5e3 / .32, 3.38 / 5000, 1.))
        print "FULL FIT"
        print p_gamma, p_landau

        n /= 10
        p_gamma, p_landau = self.constrained_full_spectrum_fit(x, n, p_gamma, p_landau)
        print "CONSTRAINED FIT"
        print p_gamma, p_landau

        plt.figure()
        print self.calc_charged_fraction(x, n, p_gamma, p_landau)

        plt.plot(x * VNS, n)
        self.plot_landau_and_gamma(x, p_gamma, p_landau)
        #plt.plot(x, n - self.gamma_func(x, *p_gamma))
        plt.xlabel("Pulse integral [V ns]")
        plt.ylabel("Count")
        plt.yscale('log')
        plt.xlim(0, 30)
        plt.ylim(1e1, 1e4)
        plt.legend()
        utils.saveplot()

        graph = GraphArtist('semilogy')
        graph.histogram(n, bins * VNS, linestyle='gray')
        self.artistplot_landau_and_gamma(graph, x, p_gamma, p_landau)
        graph.set_xlabel(r"Pulse integral [\si{\volt\nano\second}]")
        graph.set_ylabel("Count")
        graph.set_xlimits(0, 30)
        graph.set_ylimits(1e1, 1e4)
        artist.utils.save_graph(graph, dirname='plots')
開發者ID:OpenCosmics,項目名稱:sapphire,代碼行數:42,代碼來源:reconstruction_efficiency.py


注:本文中的artist.GraphArtist.set_xlabel方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。