本文整理匯總了Python中artist.GraphArtist類的典型用法代碼示例。如果您正苦於以下問題:Python GraphArtist類的具體用法?Python GraphArtist怎麽用?Python GraphArtist使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了GraphArtist類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plot_uncertainty_zenith_angular_distance
def plot_uncertainty_zenith_angular_distance(group):
group = group.E_1PeV
rec = DirectionReconstruction
N = 2
# constants for uncertainty estimation
# BEWARE: stations must be the same over all reconstruction tables used
station = group.zenith_0.attrs.cluster.stations[0]
r1, phi1 = station.calc_r_and_phi_for_detectors(1, 3)
r2, phi2 = station.calc_r_and_phi_for_detectors(1, 4)
figure()
graph = GraphArtist()
# Uncertainty estimate
x = linspace(0, deg2rad(45), 50)
#x = array([pi / 8])
phis = linspace(-pi, pi, 50)
y, y2 = [], []
for t in x:
y.append(mean(rec.rel_phi_errorsq(t, phis, phi1, phi2, r1, r2)))
y2.append(mean(rec.rel_theta1_errorsq(t, phis, phi1, phi2, r1, r2)))
y = TIMING_ERROR * sqrt(array(y))
y2 = TIMING_ERROR * sqrt(array(y2))
ang_dist = sqrt((y * sin(x)) ** 2 + y2 ** 2)
#plot(rad2deg(x), rad2deg(y), label="Estimate Phi")
#plot(rad2deg(x), rad2deg(y2), label="Estimate Theta")
plot(rad2deg(x), rad2deg(ang_dist), label="Angular distance")
graph.plot(rad2deg(x), rad2deg(ang_dist), mark=None)
print rad2deg(x)
print rad2deg(y)
print rad2deg(y2)
print rad2deg(y * sin(x))
print rad2deg(ang_dist)
# Labels etc.
xlabel("Shower zenith angle [deg]")
ylabel("Angular distance [deg]")
graph.set_xlabel(r"Shower zenith angle [\si{\degree}]")
graph.set_ylabel(r"Angular distance [\si{\degree}]")
graph.set_ylimits(min=6)
#title(r"$N_{MIP} \geq %d$" % N)
#ylim(0, 100)
#legend(numpoints=1)
utils.saveplot()
artist.utils.save_graph(graph, dirname='plots')
print
示例2: boxplot_theta_reconstruction_results_for_MIP
def boxplot_theta_reconstruction_results_for_MIP(group, N):
group = group.E_1PeV
figure()
angles = [0, 5, 10, 15, 22.5, 30, 35, 45]
r_dtheta = []
d25, d50, d75 = [], [], []
for angle in angles:
table = group._f_get_child('zenith_%s' % str(angle).replace('.', '_'))
sel = table.read_where('min_n134 >= %d' % N)
dtheta = sel[:]['reconstructed_theta'] - sel[:]['reference_theta']
r_dtheta.append(rad2deg(dtheta))
d25.append(scoreatpercentile(rad2deg(dtheta), 25))
d50.append(scoreatpercentile(rad2deg(dtheta), 50))
d75.append(scoreatpercentile(rad2deg(dtheta), 75))
fill_between(angles, d25, d75, color='0.75')
plot(angles, d50, 'o-', color='black')
xlabel(r"$\theta_{simulated}$ [deg]")
ylabel(r"$\theta_{reconstructed} - \theta_{simulated}$ [deg]")
#title(r"$N_{MIP} \geq %d$" % N)
axhline(0, color='black')
ylim(-10, 25)
utils.saveplot(N)
graph = GraphArtist()
graph.draw_horizontal_line(0, linestyle='gray')
graph.shade_region(angles, d25, d75)
graph.plot(angles, d50, linestyle=None)
graph.set_xlabel(r"$\theta_\mathrm{sim}$ [\si{\degree}]")
graph.set_ylabel(r"$\theta_\mathrm{rec} - \theta_\mathrm{sim}$ [\si{\degree}]")
graph.set_title(r"$N_\mathrm{MIP} \geq %d$" % N)
graph.set_ylimits(-8, 22)
artist.utils.save_graph(graph, suffix=N, dirname='plots')
示例3: plot_full_spectrum_fit_in_density_range
def plot_full_spectrum_fit_in_density_range(self, sel, popt, low, high):
bins = np.linspace(0, RANGE_MAX, N_BINS + 1)
n, bins = np.histogram(sel, bins=bins)
x = (bins[:-1] + bins[1:]) / 2
p_gamma, p_landau = self.constrained_full_spectrum_fit(x, n, popt[:2], popt[2:])
plt.figure()
plt.plot(x * VNS, n, label='data')
self.plot_landau_and_gamma(x, p_gamma, p_landau)
y_charged = self.calc_charged_spectrum(x, n, p_gamma, p_landau)
plt.plot(x * VNS, y_charged, label='charged particles')
plt.yscale('log')
plt.xlim(0, 50)
plt.ylim(ymin=1)
plt.xlabel("Pulse integral [V ns]")
plt.ylabel("Count")
plt.legend()
suffix = '%.1f-%.1f' % (low, high)
suffix = suffix.replace('.', '_')
utils.saveplot(suffix)
n = np.where(n > 0, n, 1e-99)
y_charged = np.where(y_charged > 0, y_charged, 1e-99)
graph = GraphArtist('semilogy')
graph.histogram(n, bins * VNS, linestyle='gray')
self.artistplot_alt_landau_and_gamma(graph, x, p_gamma, p_landau)
graph.histogram(y_charged, bins * VNS)
graph.set_xlabel(r"Pulse integral [\si{\volt\nano\second}]")
graph.set_ylabel("Count")
graph.set_title(r"$\SI{%.1f}{\per\square\meter} \leq \rho_\mathrm{charged}$ < $\SI{%.1f}{\per\square\meter}$" % (low, high))
graph.set_xlimits(0, 30)
graph.set_ylimits(1e0, 1e4)
artist.utils.save_graph(graph, suffix, dirname='plots')
示例4: plot_fsot_vs_lint_for_zenith
def plot_fsot_vs_lint_for_zenith(fsot, lint):
bins = linspace(0, 35, 21)
min_N = 1
x, f_y, f_y2, l_y, l_y2 = [], [], [], [], []
for low, high in zip(bins[:-1], bins[1:]):
rad_low = deg2rad(low)
rad_high = deg2rad(high)
query = '(min_n134 >= min_N) & (rad_low <= reference_theta) & (reference_theta < rad_high)'
f_sel = fsot.read_where(query)
l_sel = lint.read_where(query)
errors = f_sel['reconstructed_phi'] - f_sel['reference_phi']
errors2 = f_sel['reconstructed_theta'] - f_sel['reference_theta']
#f_y.append(std(errors))
#f_y2.append(std(errors2))
f_y.append((scoreatpercentile(errors, 83) - scoreatpercentile(errors, 17)) / 2)
f_y2.append((scoreatpercentile(errors2, 83) - scoreatpercentile(errors2, 17)) / 2)
errors = l_sel['reconstructed_phi'] - l_sel['reference_phi']
errors2 = l_sel['reconstructed_theta'] - l_sel['reference_theta']
#l_y.append(std(errors))
#l_y2.append(std(errors2))
l_y.append((scoreatpercentile(errors, 83) - scoreatpercentile(errors, 17)) / 2)
l_y2.append((scoreatpercentile(errors2, 83) - scoreatpercentile(errors2, 17)) / 2)
x.append((low + high) / 2)
print(x[-1], len(f_sel), len(l_sel))
clf()
plot(x, rad2deg(f_y), label="FSOT phi")
plot(x, rad2deg(f_y2), label="FSOT theta")
plot(x, rad2deg(l_y), label="LINT phi")
plot(x, rad2deg(l_y2), label="LINT theta")
legend()
xlabel("Shower zenith angle [deg]")
ylabel("Angle reconstruction uncertainty [deg]")
title(r"$N_{MIP} \geq %d$" % min_N)
utils.saveplot()
graph = GraphArtist()
graph.plot(x, rad2deg(f_y), mark=None)
graph.plot(x, rad2deg(l_y), mark=None, linestyle='dashed')
graph.plot(x, rad2deg(f_y2), mark=None)
graph.plot(x, rad2deg(l_y2), mark=None, linestyle='dashed')
graph.set_xlabel(r"Shower zenith angle [\si{\degree}]")
graph.set_ylabel(r"Angle reconstruction uncertainty [\si{\degree}]")
artist.utils.save_graph(graph, dirname='plots')
示例5: boxplot_theta_reconstruction_results_for_MIP
def boxplot_theta_reconstruction_results_for_MIP(table, N):
figure()
DTHETA = deg2rad(1.)
angles = [0, 5, 10, 15, 22.5, 35]
r_dtheta = []
x = []
d25, d50, d75 = [], [], []
for angle in angles:
theta = deg2rad(angle)
sel = table.read_where('(min_n134 >= N) & (abs(reference_theta - theta) <= DTHETA)')
dtheta = rad2deg(sel[:]['reconstructed_theta'] - sel[:]['reference_theta'])
r_dtheta.append(dtheta)
d25.append(scoreatpercentile(dtheta, 25))
d50.append(scoreatpercentile(dtheta, 50))
d75.append(scoreatpercentile(dtheta, 75))
x.append(angle)
#boxplot(r_dtheta, sym='', positions=angles, widths=2.)
fill_between(x, d25, d75, color='0.75')
plot(x, d50, 'o-', color='black')
xlabel(r"$\theta_K$ [deg]")
ylabel(r"$\theta_H - \theta_K$ [deg]")
title(r"$N_{MIP} \geq %d$" % N)
axhline(0, color='black')
ylim(-20, 25)
xlim(0, 35)
utils.saveplot(N)
graph = GraphArtist()
graph.draw_horizontal_line(0, linestyle='gray')
graph.shade_region(angles, d25, d75)
graph.plot(angles, d50, linestyle=None)
graph.set_xlabel(r"$\theta_K$ [\si{\degree}]")
graph.set_ylabel(r"$\theta_H - \theta_K$ [\si{\degree}]")
graph.set_ylimits(-5, 15)
artist.utils.save_graph(graph, suffix=N, dirname='plots')
示例6: plot_uncertainty_zenith
def plot_uncertainty_zenith(table):
rec = DirectionReconstruction
# constants for uncertainty estimation
station = table.attrs.cluster.stations[0]
r1, phi1 = station.calc_r_and_phi_for_detectors(1, 3)
r2, phi2 = station.calc_r_and_phi_for_detectors(1, 4)
N = 2
DTHETA = deg2rad(1.)
DN = .1
LOGENERGY = 15
DLOGENERGY = .5
figure()
rcParams['text.usetex'] = False
x, y, y2 = [], [], []
for theta in 5, 10, 15, 22.5, 30, 35:
x.append(theta)
THETA = deg2rad(theta)
events = table.read_where('(min_n134 >= N) & (abs(reference_theta - THETA) <= DTHETA) & (abs(log10(k_energy) - LOGENERGY) <= DLOGENERGY)')
print(theta, len(events),)
errors = events['reference_theta'] - events['reconstructed_theta']
# Make sure -pi < errors < pi
errors = (errors + pi) % (2 * pi) - pi
errors2 = events['reference_phi'] - events['reconstructed_phi']
# Make sure -pi < errors2 < pi
errors2 = (errors2 + pi) % (2 * pi) - pi
#y.append(std(errors))
#y2.append(std(errors2))
y.append((scoreatpercentile(errors, 83) - scoreatpercentile(errors, 17)) / 2)
y2.append((scoreatpercentile(errors2, 83) - scoreatpercentile(errors2, 17)) / 2)
print()
print("zenith: theta, theta_std, phi_std")
for u, v, w in zip(x, y, y2):
print(u, v, w)
print()
# Simulation data
sx, sy, sy2 = loadtxt(os.path.join(DATADIR, 'DIR-plot_uncertainty_zenith.txt'))
# Uncertainty estimate
ex = linspace(0, deg2rad(35), 50)
phis = linspace(-pi, pi, 50)
ey, ey2, ey3 = [], [], []
for t in ex:
ey.append(mean(rec.rel_phi_errorsq(t, phis, phi1, phi2, r1, r2)))
ey3.append(mean(rec.rel_phi_errorsq(t, phis, phi1, phi2, r1, r2)) * sin(t) ** 2)
ey2.append(mean(rec.rel_theta1_errorsq(t, phis, phi1, phi2, r1, r2)))
ey = TIMING_ERROR * sqrt(array(ey))
ey3 = TIMING_ERROR * sqrt(array(ey3))
ey2 = TIMING_ERROR * sqrt(array(ey2))
graph = GraphArtist()
# Plots
plot(x, rad2deg(y), '^', label="Theta")
graph.plot(x, rad2deg(y), mark='o', linestyle=None)
#plot(sx, rad2deg(sy), '^', label="Theta (sim)")
plot(rad2deg(ex), rad2deg(ey2))#, label="Estimate Theta")
graph.plot(rad2deg(ex), rad2deg(ey2), mark=None)
# Azimuthal angle undefined for zenith = 0
plot(x[1:], rad2deg(y2[1:]), 'v', label="Phi")
graph.plot(x[1:], rad2deg(y2[1:]), mark='*', linestyle=None)
#plot(sx[1:], rad2deg(sy2[1:]), 'v', label="Phi (sim)")
plot(rad2deg(ex), rad2deg(ey))#, label="Estimate Phi")
graph.plot(rad2deg(ex), rad2deg(ey), mark=None)
#plot(rad2deg(ex), rad2deg(ey3), label="Estimate Phi * sin(Theta)")
# Labels etc.
xlabel(r"Shower zenith angle [deg $\pm %d^\circ$]" % rad2deg(DTHETA))
graph.set_xlabel(r"Shower zenith angle [\si{\degree}] $\pm \SI{%d}{\degree}$" % rad2deg(DTHETA))
ylabel("Angle reconstruction uncertainty [deg]")
graph.set_ylabel(r"Angle reconstruction uncertainty [\si{\degree}]")
title(r"$N_{MIP} \geq %d, \quad %.1f \leq \log(E) \leq %.1f$" % (N, LOGENERGY - DLOGENERGY, LOGENERGY + DLOGENERGY))
ylim(0, 60)
graph.set_ylimits(0, 60)
xlim(-.5, 37)
legend(numpoints=1)
if USE_TEX:
rcParams['text.usetex'] = True
utils.saveplot()
artist.utils.save_graph(graph, dirname='plots')
print
示例7: artistplot_reconstruction_efficiency_vs_R_for_angles
def artistplot_reconstruction_efficiency_vs_R_for_angles(N):
filename = 'DIR-plot_reconstruction_efficiency_vs_R_for_angles-%d.txt' % N
all_data = loadtxt(os.path.join('plots/', filename))
graph = GraphArtist()
locations = iter(['above right', 'below left', 'below left'])
positions = iter([.9, .2, .2])
x = all_data[:, 0]
for angle, efficiencies in zip([0, 22.5, 35], all_data[:, 1:].T):
graph.plot(x, efficiencies, mark=None)
graph.add_pin(r'\SI{%s}{\degree}' % angle, use_arrow=True,
location=locations.next(),
relative_position=positions.next())
graph.set_xlabel("Core distance [\si{\meter}]")
graph.set_ylabel("Reconstruction efficiency")
graph.set_xlimits(0, 100)
graph.set_ylimits(max=1)
artist.utils.save_graph(graph, suffix=N, dirname='plots')
示例8: boxplot_core_distances_for_mips
def boxplot_core_distances_for_mips(group):
table = group.E_1PeV.zenith_22_5
figure()
r_list = []
r25, r50, r75 = [], [], []
x = []
for N in range(1, 5):
sel = table.read_where('min_n134 >= N')
r = sel[:]['r']
r_list.append(r)
x.append(N)
r25.append(scoreatpercentile(r, 25))
r50.append(scoreatpercentile(r, 50))
r75.append(scoreatpercentile(r, 75))
fill_between(x, r25, r75, color='0.75')
plot(x, r50, 'o-', color='black')
xticks(range(1, 5))
xlabel("Minimum number of particles")
ylabel("Core distance [m]")
#title(r"$\theta = 22.5^\circ$")
utils.saveplot()
graph = GraphArtist()
graph.shade_region(x, r25, r75)
graph.plot(x, r50, linestyle=None)
graph.set_xlabel("Minimum number of particles")
graph.set_ylabel(r"Core distance [\si{\meter}]")
graph.set_ylimits(min=0)
graph.set_xticks(range(5))
artist.utils.save_graph(graph, dirname='plots')
示例9: plot_front_passage
def plot_front_passage():
sim = data.root.showers.E_1PeV.zenith_0.shower_0
leptons = sim.leptons
R = 40
dR = 2
low = R - dR
high = R + dR
global t
t = leptons.read_where('(low < core_distance) & (core_distance <= high)',
field='arrival_time')
n, bins, patches = hist(t, bins=linspace(0, 30, 31), histtype='step')
graph = GraphArtist()
graph.histogram(n, bins)
graph.set_xlabel(r"Arrival time [\si{\nano\second}]")
graph.set_ylabel("Number of leptons")
graph.set_ylimits(min=0)
graph.set_xlimits(0, 30)
graph.save('plots/front-passage')
示例10: plot_trace
def plot_trace(station_group, idx):
events = station_group.events
blobs = station_group.blobs
traces_idx = events[idx]['traces']
traces = get_traces(blobs, traces_idx)
traces = array(traces)
x = arange(traces.shape[1])
x *= 2.5
clf()
plot(x, traces.T)
xlim(0, 200)
#line_styles = ['solid', 'dashed', 'dotted', 'dashdotted']
line_styles = ['black', 'black!80', 'black!60', 'black!40']
styles = (u for u in line_styles)
graph = GraphArtist(width=r'.5\linewidth')
for trace in traces:
graph.plot(x, trace / 1000, mark=None, linestyle=styles.next())
graph.set_xlabel(r"Time [\si{\nano\second}]")
graph.set_ylabel(r"Signal [\si{\volt}]")
graph.set_xlimits(0, 200)
graph.save('plots/traces')
示例11: plot_arrival_times
def plot_arrival_times():
graph = GraphArtist()
figure()
sim = data.root.showers.E_1PeV.zenith_22_5
t = get_front_arrival_time(sim, 20, 5, pi / 8)
n, bins = histogram(t, bins=linspace(0, 50, 201))
mct = monte_carlo_timings(n, bins, 100000)
n, bins, patches = hist(mct, bins=linspace(0, 20, 101), histtype='step')
graph.histogram(n, bins, linestyle='black!50')
mint = my_t_draw_something(data, 2, 100000)
n, bins, patches = hist(mint, bins=linspace(0, 20, 101), histtype='step')
graph.histogram(n, bins)
xlabel("Arrival time [ns]")
ylabel("Number of events")
graph.set_xlabel(r"Arrival time [\si{\nano\second}]")
graph.set_ylabel("Number of events")
graph.set_xlimits(0, 20)
graph.set_ylimits(min=0)
graph.save('plots/SIM-T')
print(median(t), median(mct), median(mint))
示例12: plot_R
def plot_R():
graph = GraphArtist(width=r'.45\linewidth')
n, bins, patches = hist(data.root.simulations.E_1PeV.zenith_22_5.shower_0.coincidences.col('r'), bins=100, histtype='step')
graph.histogram(n, bins, linestyle='black!50')
shower = data.root.simulations.E_1PeV.zenith_22_5.shower_0
ids = shower.observables.get_where_list('(n1 >= 1) & (n3 >= 1) & (n4 >= 1)')
R = shower.coincidences.read_coordinates(ids, field='r')
n, bins, patches = hist(R, bins=100, histtype='step')
graph.histogram(n, bins)
xlabel("Core distance [m]")
ylabel("Number of events")
print("mean", mean(R))
print("median", median(R))
graph.set_xlabel(r"Core distance [\si{\meter}]")
graph.set_ylabel("Number of events")
graph.set_xlimits(min=0)
graph.set_ylimits(min=0)
graph.save('plots/SIM-R')
示例13: plot_nearest_neighbors
def plot_nearest_neighbors(data, limit=None):
global coincidences
hisparc_group = data.root.hisparc.cluster_kascade.station_601
kascade_group = data.root.kascade
coincidences = KascadeCoincidences(data, hisparc_group, kascade_group,
ignore_existing=True)
#dt_opt = find_optimum_dt(coincidences, p0=-13, limit=1000)
#print dt_opt
graph = GraphArtist(axis='semilogy')
styles = iter(['solid', 'dashed', 'dashdotted'])
uncorrelated = None
figure()
#for shift in -12, -13, dt_opt, -14:
for shift in -12, -13, -14:
print "Shifting", shift
coincidences.search_coincidences(shift, dtlimit=1, limit=limit)
print "."
dts = coincidences.coincidences['dt']
n, bins, p = hist(abs(dts) / 1e9, bins=linspace(0, 1, 101),
histtype='step', label='%.3f s' % shift)
n = [u if u else 1e-99 for u in n]
graph.histogram(n, bins, linestyle=styles.next() + ',gray')
if uncorrelated is None:
uncorrelated = n, bins
y, bins = uncorrelated
x = (bins[:-1] + bins[1:]) / 2
f = lambda x, N, a: N * exp(-a * x)
popt, pcov = curve_fit(f, x, y)
plot(x, f(x, *popt), label=r"$\lambda = %.2f$ Hz" % popt[1])
graph.plot(x, f(x, *popt), mark=None)
yscale('log')
xlabel("Time difference [s]")
graph.set_xlabel(r"Time difference [\si{\second}]")
ylabel("Counts")
graph.set_ylabel("Counts")
legend()
graph.set_ylimits(min=10)
utils.saveplot()
graph.save('plots/MAT-nearest-neighbors')
示例14: plot_gamma_landau_fit
def plot_gamma_landau_fit(self):
events = self.data.root.hisparc.cluster_kascade.station_601.events
ph0 = events.col('integrals')[:, 0]
bins = np.linspace(0, RANGE_MAX, N_BINS + 1)
n, bins = np.histogram(ph0, bins=bins)
x = (bins[:-1] + bins[1:]) / 2
p_gamma, p_landau = self.full_spectrum_fit(x, n, (1., 1.),
(5e3 / .32, 3.38 / 5000, 1.))
print "FULL FIT"
print p_gamma, p_landau
n /= 10
p_gamma, p_landau = self.constrained_full_spectrum_fit(x, n, p_gamma, p_landau)
print "CONSTRAINED FIT"
print p_gamma, p_landau
plt.figure()
print self.calc_charged_fraction(x, n, p_gamma, p_landau)
plt.plot(x * VNS, n)
self.plot_landau_and_gamma(x, p_gamma, p_landau)
#plt.plot(x, n - self.gamma_func(x, *p_gamma))
plt.xlabel("Pulse integral [V ns]")
plt.ylabel("Count")
plt.yscale('log')
plt.xlim(0, 30)
plt.ylim(1e1, 1e4)
plt.legend()
utils.saveplot()
graph = GraphArtist('semilogy')
graph.histogram(n, bins * VNS, linestyle='gray')
self.artistplot_landau_and_gamma(graph, x, p_gamma, p_landau)
graph.set_xlabel(r"Pulse integral [\si{\volt\nano\second}]")
graph.set_ylabel("Count")
graph.set_xlimits(0, 30)
graph.set_ylimits(1e1, 1e4)
artist.utils.save_graph(graph, dirname='plots')
示例15: boxplot_phi_reconstruction_results_for_MIP
def boxplot_phi_reconstruction_results_for_MIP(group, N):
table = group.E_1PeV.zenith_22_5
figure()
bin_edges = linspace(-180, 180, 18)
x, r_dphi = [], []
d25, d50, d75 = [], [], []
for low, high in zip(bin_edges[:-1], bin_edges[1:]):
rad_low = deg2rad(low)
rad_high = deg2rad(high)
query = '(min_n134 >= N) & (rad_low < reference_phi) & (reference_phi < rad_high)'
sel = table.read_where(query)
dphi = sel[:]['reconstructed_phi'] - sel[:]['reference_phi']
dphi = (dphi + pi) % (2 * pi) - pi
r_dphi.append(rad2deg(dphi))
d25.append(scoreatpercentile(rad2deg(dphi), 25))
d50.append(scoreatpercentile(rad2deg(dphi), 50))
d75.append(scoreatpercentile(rad2deg(dphi), 75))
x.append((low + high) / 2)
fill_between(x, d25, d75, color='0.75')
plot(x, d50, 'o-', color='black')
xlabel(r"$\phi_{simulated}$ [deg]")
ylabel(r"$\phi_{reconstructed} - \phi_{simulated}$ [deg]")
#title(r"$N_{MIP} \geq %d, \quad \theta = 22.5^\circ$" % N)
xticks(linspace(-180, 180, 9))
axhline(0, color='black')
ylim(-15, 15)
utils.saveplot(N)
graph = GraphArtist()
graph.draw_horizontal_line(0, linestyle='gray')
graph.shade_region(x, d25, d75)
graph.plot(x, d50, linestyle=None)
graph.set_xlabel(r"$\phi_\mathrm{sim}$ [\si{\degree}]")
graph.set_ylabel(r"$\phi_\mathrm{rec} - \phi_\mathrm{sim}$ [\si{\degree}]")
graph.set_title(r"$N_\mathrm{MIP} \geq %d$" % N)
graph.set_xticks([-180, -90, '...', 180])
graph.set_xlimits(-180, 180)
graph.set_ylimits(-17, 17)
artist.utils.save_graph(graph, suffix=N, dirname='plots')