本文整理匯總了Python中admit.util.AdmitLogging.AdmitLogging.info方法的典型用法代碼示例。如果您正苦於以下問題:Python AdmitLogging.info方法的具體用法?Python AdmitLogging.info怎麽用?Python AdmitLogging.info使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類admit.util.AdmitLogging.AdmitLogging
的用法示例。
在下文中一共展示了AdmitLogging.info方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: addBDPtoAT
# 需要導入模塊: from admit.util.AdmitLogging import AdmitLogging [as 別名]
# 或者: from admit.util.AdmitLogging.AdmitLogging import info [as 別名]
def addBDPtoAT(self, bdp):
""" Method to add a BDP to an AT. The AT is not specified, but the
_taskid attribute of the BDP is used to identify the necessary AT.
Parameters
----------
bdp : BDP
Any valid BDP, to be added to an existing AT.
Returns
-------
None
"""
found = False
cp = copy.deepcopy(bdp)
# find the AT we need
for at in self.tasks:
# see if the ID's match
if at._taskid == bdp._taskid:
found = True
# set the base directory of the BDP
cp.baseDir(at.baseDir())
# add it to the correct slot
at._bdp_out[at._bdp_out_map.index(cp._uid)] = cp
break
if not found:
logging.info("##### Found orphaned BDP with type %s in file %s" % \
(bdp._type, bdp.xmlFile))
示例2: checkAll
# 需要導入模塊: from admit.util.AdmitLogging import AdmitLogging [as 別名]
# 或者: from admit.util.AdmitLogging.AdmitLogging import info [as 別名]
def checkAll(self):
""" Method to check the dtd structure to see if all expected
nodes were found.
Parameters
----------
None
Returns
-------
Boolean, whether or not all nodes were found
"""
#pp.pprint(self.entities)
for i in self.entities:
if not self.entities[i]["found"]:
print self.xmlFile
logging.info(str(i) + " not found")
return False
for a in self.entities[i]["attrib"]:
if not self.entities[i]["attrib"][a]["found"]:
print "2",self.xmlFile
logging.info(str(i) + " " + str(a) + " not found")
return False
return True
示例3: get_mem
# 需要導入模塊: from admit.util.AdmitLogging import AdmitLogging [as 別名]
# 或者: from admit.util.AdmitLogging.AdmitLogging import info [as 別名]
def get_mem(self):
""" Read memory usage info from /proc/pid/status
Return Virtual and Resident memory size in MBytes.
"""
global ostype
if ostype == None:
ostype = os.uname()[0].lower()
logging.info("OSTYPE: %s" % ostype)
scale = {'MB': 1024.0}
lines = []
try:
if ostype == 'linux':
proc_status = '/proc/%d/status' % os.getpid() # linux only
# open pseudo file /proc/<pid>/status
t = open(proc_status)
# get value from line e.g. 'VmRSS: 9999 kB\n'
for it in t.readlines():
if 'VmSize' in it or 'VmRSS' in it :
lines.append(it)
t.close()
else:
proc = subprocess.Popen(['ps','-o', 'rss', '-o', 'vsz', '-o','pid', '-p',str(os.getpid())],stdout=subprocess.PIPE)
proc_output = proc.communicate()[0].split('\n')
proc_output_memory = proc_output[1]
proc_output_memory = proc_output_memory.split()
phys_mem = int(proc_output_memory[0])/1204 # to MB
virtual_mem = int(proc_output_memory[1])/1024
except (IOError, OSError):
if self.report:
logging.timing(self.label + " Error: cannot read memory usage information.")
return np.array([])
# parse the two lines
mem = {}
if(ostype != 'darwin'):
for line in lines:
words = line.strip().split()
#print words[0], '===', words[1], '===', words[2]
# get rid of the tailing ':'
key = words[0][:-1]
# convert from KB to MB
scaled = float(words[1]) / scale['MB']
mem[key] = scaled
else:
mem['VmSize'] = virtual_mem
mem['VmRSS'] = phys_mem
return np.array([mem['VmSize'], mem['VmRSS']])
示例4: characters
# 需要導入模塊: from admit.util.AdmitLogging import AdmitLogging [as 別名]
# 或者: from admit.util.AdmitLogging.AdmitLogging import info [as 別名]
def characters(self, ch):
""" Method called whenever characters are detected in an xml node
This method does some dtd validation. This
method is only called by the SAX parser iteself.
Parameters
----------
ch : unicode characters
Returns
-------
None
"""
target = None
char = str(ch).strip()
if char.isspace() or not char:
return
# determine which class the data are getting writtrn to
if self.inUtil:
target = self.Util
elif self.inBDP:
target = self.BDP
elif self.inAT:
target = self.curAT
elif self.inSummaryEntry:
target = self.summaryEntry
elif self.inSummary:
target = self.summaryData
else:
target = self.admit
# a list or dictionary has to be decoded
if isinstance(self.type, list) or isinstance(self.type, dict) \
or isinstance(self.type, tuple) or isinstance(self.type, set) \
or isinstance(self.type, np.ndarray) or isinstance(self.type, str):
if self.inflow:
self.flowdata += char
else:
self.tempdata += char
else:
# check the version
if self.name == "_version":
ver = self.getattr(target, self.name)
vercheck = utils.compareversions(ver, str(char))
if vercheck < 0: # newer read in
logging.warning("Version mismatch for %s, data are a newer version than current software, attempting to continue." % target.getkey("_type"))
elif vercheck > 0: # older read in
logging.warning("Version mismatch for %s, data are an older version than current software, attempting to continue." % target.getkey("_type"))
else:
try:
self.setattr(target, self.name, self.getData(char))
except AttributeError:
logging.info("Data member %s is not a member of %s. This may be due to a version mismatch between the data and your software, attempting to continue." % (self.name, str(type(target))))
except:
raise
del ch
示例5: test_info
# 需要導入模塊: from admit.util.AdmitLogging import AdmitLogging [as 別名]
# 或者: from admit.util.AdmitLogging.AdmitLogging import info [as 別名]
def test_info(self):
msg = "unit_test_info_message"
Alogging.info(msg)
found = False
r = open(self.logfile, 'r')
for line in r.readlines():
if msg in line:
if(self.verbose):
print "\nFound message > ", line
found = True
r.close()
break
self.assertTrue(found)
示例6: fitgauss1D
# 需要導入模塊: from admit.util.AdmitLogging import AdmitLogging [as 別名]
# 或者: from admit.util.AdmitLogging.AdmitLogging import info [as 別名]
def fitgauss1D(x, y, par=None, width=-1.0):
""" Method for fitting a 1D gaussian to a spectral line
Parameters
----------
x: array like
The x co-ordinates of the spectrum, note the center of
the spectral line should be near 0.0 if possible
y: array like
The y co-ordinates (intensity) of the spectrum
par: array like
The initial guesses for the fit parameters, the fitter works best
if the center parameter is near 0.0
3 parameters: PeakY, CenterX, FWHM.
width: float
If positive, this is the assumed width (or step) in the x array,
which is needed if only 1 point is given. Otherwise ignored.
Returns
-------
A tuple containing the best fit parameters (as a list) and the covariance
of the parameters (also as a list)
"""
if len(x) == 3:
logging.info("Gaussian fit attempted with only three points, look at the covariance for goodness of fit.")
# if there are too few points to fit then just conserve the are of the channels to calculate the
# parameters
if len(x) < 3:
logging.info("Gaussian fit attempted with fewer than three points (%d). Using conservation of area method to determine parameters." % len(x))
params = fitgauss1Dm(x,y,dx=width)
covar = [1000.] * len(params)
else:
try:
params, covar = curve_fit(gaussian1D, x, y, p0=par)
# if the covariance cannot be determined, just return the initial values
except RuntimeError, e:
if "Optimal" in str(e):
params = par
covar = [0] * len(par)
# otherwise re-raise the exception
else:
raise
示例7: test_effectiveLevel
# 需要導入模塊: from admit.util.AdmitLogging import AdmitLogging [as 別名]
# 或者: from admit.util.AdmitLogging.AdmitLogging import info [as 別名]
def test_effectiveLevel(self):
msg = "unit_test_levels_message"
# check that the logging level is what is expected
level = Alogging.getEffectiveLevel()
self.assertTrue(level == self.level)
# set the level to a new value and check again
Alogging.setLevel(50)
level = Alogging.getEffectiveLevel()
self.assertTrue(level == 50)
# log an info message which is below the logging level, this message should not appear
# in the logs
Alogging.info(msg)
found = False
r = open(self.logfile, 'r')
for line in r.readlines():
if msg in line:
if(self.verbose):
print "\nFound message >", line
found = True
break
r.close()
self.assertFalse(found)
Alogging.setLevel(self.level)
# reset the logging level
msg += "2"
# log an info message, which is now above the logging level, this message should appear
# in the logs
Alogging.info(msg)
found = False
r = open(self.logfile, 'r')
for line in r.readlines():
if msg in line:
if(self.verbose):
print "\nFound message >", line
found = True
r.close()
break
self.assertTrue(found)
示例8: checkAttribute
# 需要導入模塊: from admit.util.AdmitLogging import AdmitLogging [as 別名]
# 或者: from admit.util.AdmitLogging.AdmitLogging import info [as 別名]
def checkAttribute(self, name, attrib, value=None):
""" Method to check an attribute for validity. Validity includes correct
name and data type.
Parameters
----------
name : str
The name of the node being checked
attrib : str
The attribute of the node being checked, if any.
value : str
The type of the attribute being checked (e.g. bt.INT)
Default: None
"""
# check an attribute for validity
try:
if not value in self.entities[name]["attrib"][attrib]["values"] \
and not "ANY" in self.entities[name]["attrib"][attrib]["values"]:
raise Exception("DTDParser.checkAttributes: Value %s for attribute %s is not a valid entry (file %s)" %
(value, name, self.xmlFile))
self.entities[name]["attrib"][attrib]["found"] = True
except KeyError:
logging.info("Attribute %s not listed in DTD, malformed xml detected (%s)" %
(attrib, self.xmlFile))
logging.info("Inconsistency between dtd and xml detected, continuing")
except:
logging.info("Unknown error encountered while parsing attribute %s (%s)" %
(attrib, self.xmlFile))
raise
示例9: run
# 需要導入模塊: from admit.util.AdmitLogging import AdmitLogging [as 別名]
# 或者: from admit.util.AdmitLogging.AdmitLogging import info [as 別名]
def run(self):
""" running the File_AT task
"""
# grab and check essential keywords
filename = self.getkey('file')
logging.info("file=%s" % filename)
if len(filename) == 0:
raise Exception,'File_AT: no file= given'
exist = self.getkey('exist')
if exist:
#
logging.warning("no checking now")
# self._bdp_in[0].checkfiles()
# create the BDP
bdp1 = File_BDP(filename)
bdp1.filename = filename
self.addoutput(bdp1)
# touch the file if desired
if self.getkey('touch'): bdp1.touch()
示例10: check
# 需要導入模塊: from admit.util.AdmitLogging import AdmitLogging [as 別名]
# 或者: from admit.util.AdmitLogging.AdmitLogging import info [as 別名]
def check(self, name, attrib=None, value=None):
""" Method to check a node for validity. Validity includes correct name
and data type.
Parameters
----------
name : str
The name of the node being checked
attrib : str
The attribute of the node being checked, if any.
Default: None
value : str
The type of the attribute being checked (e.g. bt.INT)
Default: None
"""
# check a node for validity
try:
# note that the node has been found
self.entities[name]["found"] = True
# if there is an attribute specified then check it too
# if the attribute was not expected just print a note to the screen
if attrib is not None:
try:
if not value in self.entities[name]["attrib"][attrib]["values"] \
and not "ANY" in self.entities[name]["attrib"][attrib]["values"]:
raise Exception("DTDParser.check: Value %s for attribute %s is not a valid entry (attribute = %s) (file %s)" % (value, name, attrib, self.xmlFile))
self.entities[name]["attrib"][attrib]["found"] = True
except KeyError:
logging.info("Attribute %s for %s not listed in DTD, malformed xml detected (%s)" %
(attrib, name, self.xmlFile))
logging.info("Inconsistency between dtd and xml detected, continuing")
except:
logging.info("Unknown error encountered while parsing attribute %s for %s (%s)" %
(attrib, name, self.xmlFile))
raise
except KeyError:
logging.info("Data member %s is not a member of the dtd, xml inconsistent with definition (%s)" %
(name, self.xmlFile))
except:
raise
示例11: run
# 需要導入模塊: from admit.util.AdmitLogging import AdmitLogging [as 別名]
# 或者: from admit.util.AdmitLogging.AdmitLogging import info [as 別名]
def run(self):
""" The run method creates the BDP
Parameters
----------
None
Returns
-------
None
"""
dt = utils.Dtime("Export") # tagging time
basename = self.getkey("basename")
nbdp = len(self._bdp_in)
logging.info("Found %d input BDPs" % nbdp)
if nbdp > 1:
logging.info("Only dealing with 1 BDP now")
b1 = self._bdp_in[0] # image/cube
infile = b1.getimagefile(bt.CASA) # ADMIT filename of the image (cube)
if len(basename) == 0:
fitsname = self.mkext(infile,'fits') # morph to the new output name with replaced extension '
image_out = self.dir(fitsname) # absolute filename
else:
if basename[0:2] == './' or basename[0] == '/':
image_out = basename + ".fits"
else:
image_out = self.dir(basename + ".fits")
dt.tag("start")
logging.info("Writing FITS %s" % image_out)
# @todo check self.dir(image_out)
casa.exportfits(self.dir(infile), image_out, overwrite=True)
dt.tag("done")
dt.end()
示例12: run
# 需要導入模塊: from admit.util.AdmitLogging import AdmitLogging [as 別名]
# 或者: from admit.util.AdmitLogging.AdmitLogging import info [as 別名]
def run(self):
""" The run method, creates the slices, regrids if requested, and
creates the BDP(s)
Parameters
----------
None
Returns
-------
None
"""
dt = utils.Dtime("LineCube")
self._summary = {}
# look for an input noise level, either through keyword or input
# CubeStats BDP or calculate it if needed
pad = self.getkey("pad")
equalize = self.getkey("equalize")
minchan = 0
linelist = self._bdp_in[1]
if linelist == None or len(linelist) == 0:
logging.info("No lines found in input LineList_BDP, exiting.")
return
spw = self._bdp_in[0]
# get the columns from the table
cols = linelist.table.getHeader()
# get the casa image
imagename = spw.getimagefile(bt.CASA)
imh = imhead(self.dir(imagename), mode='list')
# set the overall parameters for imsubimage
args = {"imagename" : self.dir(imagename),
"overwrite" : True}
dt.tag("start")
if pad != 0:
nchan = imh['shape'][2]
dt.tag("pad")
# if equal size cubes are requested, this will honor the requested pad
if equalize:
start = linelist.table.getColumnByName("startchan")
end = linelist.table.getColumnByName("endchan")
# look for the widest line
for i in range(len(start)):
diff = end[i] - start[i] + 1
minchan = max(minchan , diff + (pad * 2))
dt.tag("equalize")
# get all of the rows in the table
rows = linelist.getall()
delrow = set()
procblend = [0]
# search through looking for blended lines, leave only the strongest from each blend
# in the list
for i, row in enumerate(rows):
if row.blend in procblend:
continue
strongest = -100.
index = -1
indexes = []
blend = row.blend
for j in range(i, len(rows)):
if rows[j].blend != blend:
continue
indexes.append(j)
if rows[j].linestrength > strongest:
strongest = rows[j].linestrength
index = j
indexes.remove(index)
delrow = delrow | set(indexes)
procblend.append(blend)
dr = list(delrow)
dr.sort()
dr.reverse()
for row in dr:
del rows[row]
# check on duplicate UID's, since those are the directory names here
uid1 = []
for row in rows:
uid1.append(row.getkey("uid"))
uid2 = set(uid1)
if len(uid1) != len(uid2):
print "LineList:",uid1
logging.warning("There are duplicate names in the LineList")
#raise Exception,"There are duplicate names in the LineList"
# Create Summary table
lc_description = admit.util.Table()
lc_description.columns = ["Line Name","Start Channel","End Channel","Output Cube"]
lc_description.units = ["","int","int",""]
lc_description.description = "Parameters of Line Cubes"
# loop over all entries in the line list
rdata = []
for row in rows:
uid = row.getkey("uid")
cdir = self.mkext(imagename,uid)
#.........這裏部分代碼省略.........
示例13: run
# 需要導入模塊: from admit.util.AdmitLogging import AdmitLogging [as 別名]
# 或者: from admit.util.AdmitLogging.AdmitLogging import info [as 別名]
def run(self):
""" The run method creates the BDP
Parameters
----------
None
Returns
-------
None
"""
dt = utils.Dtime("SFind2D") # tagging time
self._summary = {}
# get key words that user input
nsigma = self.getkey("numsigma")
sigma = self.getkey("sigma")
region = self.getkey("region")
robust = self.getkey("robust")
snmax = self.getkey("snmax")
ds9 = True # writes a "ds9.reg" file
mpl = True # aplot.map1() plot
dynlog = 20.0 # above this value of dyn range finder chart is log I-scaled
bpatch = True # patch units to Jy/beam for ia.findsources()
# get the input casa image from bdp[0]
bdpin = self._bdp_in[0]
infile = bdpin.getimagefile(bt.CASA)
if mpl:
data = np.flipud(np.rot90(casautil.getdata(self.dir(infile)).data))
# check if there is a 2nd image (which will be a PB)
for i in range(len(self._bdp_in)):
print 'BDP',i,type(self._bdp_in[i])
if self._bdp_in[2] != None:
bdpin_pb = self._bdp_in[1]
bdpin_cst = self._bdp_in[2]
print "Need to process PB"
else:
bdpin_pb = None
bdpin_cst = self._bdp_in[1]
print "No PB given"
# get the output bdp basename
slbase = self.mkext(infile,'sl')
# make sure it's a 2D map
if not casautil.mapdim(self.dir(infile),2):
raise Exception,"Input map dimension not 2: %s" % infile
# arguments for imstat call if required
args = {"imagename" : self.dir(infile)}
if region != "":
args["region"] = region
dt.tag("start")
# The following code sets the sigma level for searching for sources using
# the sigma and snmax keyword as appropriate
# if no CubeStats BDP was given and no sigma was specified:
# find a noise level via casa.imstat()
# if a CubeStat_BDP is given get it from there.
if bdpin_cst == None:
# get statistics from input image with imstat because no CubeStat_BDP
stat = casa.imstat(**args)
dmin = float(stat["min"][0]) # these would be wrong if robust were used already
dmax = float(stat["max"][0])
args.update(casautil.parse_robust(robust)) # only now add robust keywords for the sigma
stat = casa.imstat(**args)
if sigma <= 0.0 :
sigma = float(stat["sigma"][0])
dt.tag("imstat")
else:
# get statistics from CubeStat_BDP
sigma = bdpin_cst.get("sigma")
dmin = bdpin_cst.get("minval")
dmax = bdpin_cst.get("maxval")
self.setkey("sigma",sigma)
# calculate cutoff based either on RMS or dynamic range limitation
drange = dmax/(nsigma*sigma)
if snmax < 0.0 :
snmax = drange
if drange > snmax :
cutoff = 1.0/snmax
else:
cutoff = 1.0/drange
logging.info("sigma, dmin, dmax, snmax, cutoff %g %g %g %g %g" % (sigma, dmin, dmax, snmax, cutoff))
# define arguments for call to findsources
args2 = {"cutoff" : cutoff}
args2["nmax"] = 30
if region != "" :
args2["region"] = region
#args2["mask"] = ""
args2["point"] = False
args2["width"] = 5
args2["negfind"] = False
# set-up for SourceList_BDP
slbdp = SourceList_BDP(slbase)
#.........這裏部分代碼省略.........
示例14: endElement
# 需要導入模塊: from admit.util.AdmitLogging import AdmitLogging [as 別名]
# 或者: from admit.util.AdmitLogging.AdmitLogging import info [as 別名]
def endElement(self, name):
""" Method called whenever the end of an xml element is reached. This
method is only called by the SAX parser iteself.
Parameters
----------
name : str
The name of the node that just ended
Returns
-------
None
"""
# reset the tracking stuff, add BDP's to AT's, AT's to the flowmanager
# reconstruct any nodes that spanned multiple lines
if name == self.utilName:
# add the utility classes to the appropriate parent class
# Images always get added to MultiImages
if self.inMulti:
self.MultiImage.addimage(copy.deepcopy(self.Util), self.Util.name)
elif self.inBDP:
setattr(self.BDP, self.utilName, copy.deepcopy(self.Util))
elif self.inAT:
setattr(self.curAT, self.utilName, copy.deepcopy(self.Util))
self.inUtil = False
self.utilName = ""
elif name == self.multiName:
if self.inBDP:
setattr(self.BDP, self.multiName, copy.deepcopy(self.MultiImage))
elif self.inAT:
setattr(self.curAT, self.multiName, copy.deepcopy(self.MultiImage))
self.multiImageName = ""
self.inMulti = False
self.inUtil = False
elif name == bt.BDP:
# one last validation run
self.BDP._baseDir = self.basedir
if not self.dtd.checkAll():
logging.info("Some required nodes missing from xml file, attempting to continue anyway.")
elif name == bt.FLOWMANAGER:
temp = aast.literal_eval(self.flowdata)
for key in ["depsmap", "varimap"]:
if key in temp:
temp[key] = eval(temp[key])
self.flowmanager = fm.FlowManager(**temp)
self.inflow = False
elif isinstance(self.type, str):
if self.inUtil:
target = self.Util
elif self.inBDP:
target = self.BDP
elif self.inAT:
target = self.curAT
elif self.inSummaryEntry:
target = self.summaryEntry
elif name == "projmanager":
target = self
else:
target = self.admit
self.setattr(target, name, self.tempdata)
self.tempdata = ""
elif isinstance(self.type, list) or isinstance(self.type, dict) \
or isinstance(self.type, tuple) or isinstance(self.type, set):
temp = aast.literal_eval(self.tempdata)
if self.inUtil:
target = self.Util
elif self.inBDP:
target = self.BDP
elif self.inAT:
target = self.curAT
elif self.inSummaryEntry:
target = self.summaryEntry
elif name == "projmanager":
target = self
else:
target = self.admit
for i in self.ndarr:
temp[i] = np.array(temp[i], dtype=object)
for i in self.sets:
temp[i] = set(temp[i])
if isinstance(self.type, tuple):
temp = tuple(temp)
elif isinstance(self.type, set):
temp = set(temp)
try:
self.setattr(target, name, temp)
except AttributeError:
logging.info("Data member %s is not a member of %s. This may be due to a version mismatch between the data and your software, attempting to continue." % (self.name, str(type(target))))
except:
raise
elif isinstance(self.type, np.ndarray):
temp = aast.literal_eval(self.tempdata)
if self.inUtil:
target = self.Util
elif self.inBDP:
target = self.BDP
elif self.inAT:
target = self.curAT
#.........這裏部分代碼省略.........
示例15: run
# 需要導入模塊: from admit.util.AdmitLogging import AdmitLogging [as 別名]
# 或者: from admit.util.AdmitLogging.AdmitLogging import info [as 別名]
#.........這裏部分代碼省略.........
dt.tag("imstat0")
imstat1 = casa.imstat(self.dir(fin),axes=[0,1],logfile=self.dir('imstat1.logfile'),append=False,**rargs)
dt.tag("imstat1")
# imm = casa.immoments(self.dir(fin),axis='spec', moments=8, outfile=self.dir('ppp.im'))
if nrargs > 0:
# need to get the peaks without rubust
imstat10 = casa.imstat(self.dir(fin), logfile=self.dir('imstat0.logfile'),append=True)
dt.tag("imstat10")
imstat11 = casa.imstat(self.dir(fin),axes=[0,1],logfile=self.dir('imstat1.logfile'),append=True)
dt.tag("imstat11")
# grab the relevant plane-based things from imstat1
if nrargs == 0:
mean = imstat1["mean"]
sigma = imstat1["medabsdevmed"]*1.4826 # see also: astropy.stats.median_absolute_deviation()
peakval = imstat1["max"]
minval = imstat1["min"]
else:
mean = imstat1["mean"]
sigma = imstat1["rms"]
peakval = imstat11["max"]
minval = imstat11["min"]
if True:
# work around a bug in imstat(axes=[0,1]) for last channel [CAS-7697]
for i in range(len(sigma)):
if sigma[i] == 0.0:
minval[i] = peakval[i] = 0.0
# too many variations in the RMS ?
sigma_pos = sigma[np.where(sigma>0)]
smin = sigma_pos.min()
smax = sigma_pos.max()
logging.info("sigma varies from %f to %f; %d/%d channels ok" % (smin,smax,len(sigma_pos),len(sigma)))
if maxvrms > 0:
if smax/smin > maxvrms:
cliprms = smin * maxvrms
logging.warning("sigma varies too much, going to clip to %g (%g > %g)" % (cliprms, smax/smin, maxvrms))
sigma = np.where(sigma < cliprms, sigma, cliprms)
# @todo (and check again) for foobar.fits all sigma's became 0 when robust was selected
# was this with mask=True/False?
# PeakPointPlot (can be expensive, hence the option)
if use_ppp:
logging.info("Computing MaxPos for PeakPointPlot")
xpos = np.zeros(nchan)
ypos = np.zeros(nchan)
peaksum = np.zeros(nchan)
ia.open(self.dir(fin))
for i in range(nchan):
if sigma[i] > 0.0:
plane = ia.getchunk(blc=[0,0,i,-1],trc=[-1,-1,i,-1],dropdeg=True)
v = ma.masked_invalid(plane)
v_abs = np.absolute(v)
max = np.unravel_index(v_abs.argmax(), v_abs.shape)
xpos[i] = max[0]
ypos[i] = max[1]
if numsigma > 0.0:
peaksum[i] = ma.masked_less(v,numsigma * sigma[i]).sum()
peaksum = np.nan_to_num(peaksum) # put 0's where nan's are found
ia.close()
dt.tag("ppp")
nzeros = len(np.where(sigma<=0.0))