本文整理匯總了Python中MOSFIRE.IO.writefits方法的典型用法代碼示例。如果您正苦於以下問題:Python IO.writefits方法的具體用法?Python IO.writefits怎麽用?Python IO.writefits使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類MOSFIRE.IO
的用法示例。
在下文中一共展示了IO.writefits方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: imcombine
# 需要導入模塊: from MOSFIRE import IO [as 別名]
# 或者: from MOSFIRE.IO import writefits [as 別名]
def imcombine(filelist, maskname, fname, options, sum_type):
""" combine the images in file list into fname.
Sum type:
rate -- filelist is in cnt/s
ivar-rate -- filelist is in s/cnt
snr-rate -- filelist is in SNR
"""
ARR = None
hdr = None
i = 1
itime = 0
for file in filelist:
this_hdr, img = IO.readfits(file)
cards = this_hdr.ascardlist()
thisitime = this_hdr["truitime"]
itime += thisitime
if ARR is None:
ARR = np.zeros(img.shape)
if sum_type == "rate":
ARR += img * thisitime
if sum_type == "ivar-rate":
ARR += thisitime / img
if sum_type == "snr-rate":
ARR += img * thisitime
if hdr is None:
hdr = this_hdr
hdr.update("fno%2.2i" % i, file, "--")
for card in cards:
key, value, comment = (card.key, card.value, card.comment)
if hdr.has_key(key) and hdr[key] != value:
key = key + ("_img%2.2i" % i)
if len(key) > 8:
key = "HIERARCH " + key
try:
hdr.update(key, value, comment)
except ValueError:
pass
hdr.update("itime", itime, "Itime for %i rectified images" % len(filelist))
if sum_type == "rate":
ARR /= itime
if sum_type == "ivar-rate":
ARR = itime / ARR
if sum_type == "snr-rate":
ARR /= itime
IO.writefits(ARR, maskname, fname, options, header=hdr, overwrite=True, lossy_compress=True)
示例2: rectify
# 需要導入模塊: from MOSFIRE import IO [as 別名]
# 或者: from MOSFIRE.IO import writefits [as 別名]
def rectify(dname, lamdat, A, B, maskname, band, wavoptions,
longoptions):
header, data = IO.readfits(dname)
raw_img = data * Detector.gain / header['TRUITIME']
dlam = Wavelength.grating_results(band)
hpp = np.array(Filters.hpp[band])
ll_fid = np.arange(hpp[0], hpp[1], dlam)
rectified = np.zeros((2048, len(ll_fid)))
from scipy.interpolate import interp1d
for i in xrange(2048):
ll = lamdat[i,:]
ss = raw_img[i,:]
ok = np.isfinite(ll) & np.isfinite(ss) & (ll < hpp[1]) & (ll >
hpp[0])
if len(np.where(ok)[0]) < 30:
continue
f = interp1d(ll[ok], ss[ok], bounds_error=False)
rectified[i,:] = f(ll_fid)
header.update("wat0_001", "system=world")
header.update("wat1_001", "wtype=linear")
header.update("wat2_001", "wtype=linear")
header.update("dispaxis", 1)
header.update("dclog1", "Transform")
header.update("dc-flag", 0)
header.update("ctype1", "AWAV")
header.update("cunit1", "Angstrom")
header.update("crval1", ll_fid[0])
header.update("crval2", 0)
header.update("crpix1", 1)
header.update("crpix2", 1)
header.update("cdelt1", 1)
header.update("cdelt2", 1)
header.update("cname1", "angstrom")
header.update("cname2", "pixel")
header.update("cd1_1", dlam)
header.update("cd1_2", 0)
header.update("cd2_1", 0)
header.update("cd2_2", 1)
header.update("object", "rectified [eps]")
IO.writefits(rectified, maskname, "rectified_%s" % (dname),
wavoptions, header=header, overwrite=True, lossy_compress=True)
示例3: apply_flat
# 需要導入模塊: from MOSFIRE import IO [as 別名]
# 或者: from MOSFIRE.IO import writefits [as 別名]
def apply_flat(scifilename, maskname, band):
''' Divides the contents of scifilename by the flat field and
overwrites scifilename with the same file divided by the flat
Args:
scifilename: Path to science file name.
maskname: The mask name
band: The filter bands
Results:
Overwrites scifilename where the data contents of the file
are divided by the pixel flat
'''
flat = IO.load_flat(maskname, band, {})
flat_data = flat[1].filled(1.0)
header, data = IO.readfits(scifilename)
print("Applying flat to file {0}".format(scifilename))
IO.writefits(data/flat_data, maskname, scifilename, {}, header=header,
overwrite=True)
示例4: imcombine
# 需要導入模塊: from MOSFIRE import IO [as 別名]
# 或者: from MOSFIRE.IO import writefits [as 別名]
#.........這裏部分代碼省略.........
el_per_sec = electrons / itimes
output = np.zeros((2048, 2048))
exptime = np.zeros((2048, 2048))
numreads = header["READS0"]
RN_adu = Detector.RN / np.sqrt(numreads) / Detector.gain
RN = Detector.RN / np.sqrt(numreads)
# Cosmic ray rejection code begins here. This code construction the
# electrons and itimes arrays.
if len(files) >= 9:
print "Sigclip CRR"
srt = np.argsort(electrons, axis=0, kind='quicksort')
shp = el_per_sec.shape
sti = np.ogrid[0:shp[0], 0:shp[1], 0:shp[2]]
electrons = electrons[srt, sti[1], sti[2]]
el_per_sec = el_per_sec[srt, sti[1], sti[2]]
itimes = itimes[srt, sti[1], sti[2]]
# Construct the mean and standard deviation by dropping the top and bottom two
# electron fluxes. This is temporary.
mean = np.mean(el_per_sec[2:-2,:,:], axis = 0)
std = np.std(el_per_sec[2:-2,:,:], axis = 0)
drop = np.where( (el_per_sec > (mean+std*4)) | (el_per_sec < (mean-std*4)) )
print "dropping: ", len(drop[0])
electrons[drop] = 0.0
itimes[drop] = 0.0
electrons = np.sum(electrons, axis=0)
itimes = np.sum(itimes, axis=0)
Nframe = len(files)
elif len(files) > 5:
print "WARNING: Drop min/max CRR"
srt = np.argsort(el_per_sec,axis=0)
shp = el_per_sec.shape
sti = np.ogrid[0:shp[0], 0:shp[1], 0:shp[2]]
electrons = electrons[srt, sti[1], sti[2]]
itimes = itimes[srt, sti[1], sti[2]]
electrons = np.sum(electrons[1:-1,:,:], axis=0)
itimes = np.sum(itimes[1:-1,:,:], axis=0)
Nframe = len(files) - 2
else:
print "WARNING: CRR through median filtering"
for i in xrange(len(files)):
el = electrons[i,:,:]
it = itimes[i,:,:]
el_mf = scipy.signal.medfilt(el, 5)
bad = np.abs(el - el_mf) / np.abs(el) > 10.0
el[bad] = 0.0
it[bad] = 0.0
electrons[i,:,:] = el
itimes[i,:,:] = it
electrons = np.sum(electrons, axis=0)
itimes = np.sum(itimes, axis=0)
Nframe = len(files)
''' Now handle variance '''
numreads = header["READS0"]
RN_adu = Detector.RN / np.sqrt(numreads) / Detector.gain
RN = Detector.RN / np.sqrt(numreads)
var = (electrons + RN**2)
''' Now mask out bad pixels '''
electrons[data.mask] = np.nan
var[data.mask] = np.inf
if "RN" in header: raise Exception("RN Already populated in header")
header['RN'] = ("%1.3f" , "Read noise in e-")
header['NUMFRM'] = (Nframe, 'Typical number of frames in stack')
if outname is not None:
header['BUNIT'] = 'ELECTRONS/SECOND'
IO.writefits(np.float32(electrons/itimes), maskname, "eps_%s" % (outname),
options, header=header, overwrite=True)
# Update itimes after division in order to not introduce nans
itimes[data.mask] = 0.0
header['BUNIT'] = 'ELECTRONS^2'
IO.writefits(var, maskname, "var_%s" % (outname),
options, header=header, overwrite=True, lossy_compress=True)
header['BUNIT'] = 'SECOND'
IO.writefits(np.float32(itimes), maskname, "itimes_%s" % (outname),
options, header=header, overwrite=True, lossy_compress=True)
return header, electrons, var, bs, itimes, Nframe
示例5: write_outputs
# 需要導入模塊: from MOSFIRE import IO [as 別名]
# 或者: from MOSFIRE.IO import writefits [as 別名]
def write_outputs(solutions, itime, header, maskname, band_name, plan, options):
sky_sub_out = np.zeros((2048, 2048), dtype=np.float)
sky_model_out = np.zeros((2048, 2048), dtype=np.float)
p0 = plan[0].replace("'", "p")
p1 = plan[1].replace("'", "p")
suffix = "%s-%s" % (p0,p1)
xroi = slice(0,2048)
for sol in solutions:
if not sol["ok"]:
continue
yroi = slice(sol["bottom"], sol["top"])
sky_sub_out[yroi, xroi] = sol["output"]
sky_model_out[yroi, xroi] = sol["model"]
header['BUNIT'] = 'SECOND'
IO.writefits(itime, maskname, "itime_%s_%s_%s.fits" % (maskname, band,
suffix), options, header=header, overwrite=True, lossy_compress=True)
header['BUNIT'] = 'ELECTRONS/SECOND'
IO.writefits(data, maskname, "sub_%s_%s_%s.fits" % (maskname, band,
suffix), options, header=header, overwrite=True, lossy_compress=True)
header['BUNIT'] = 'ELECTRONS/SECOND'
IO.writefits(sky_sub_out, maskname, "bsub_%s_%s_%s.fits" % (maskname, band,
suffix), options, header=header, overwrite=True)
header['BUNIT'] = 'ELECTRONS'
IO.writefits(Var, maskname, "var_%s_%s_%s.fits" % (maskname, band,
suffix), options, header=header, overwrite=True, lossy_compress=True)
header['BUNIT'] = 'ELECTRONS/SECOND'
IO.writefits(sky_model_out, maskname, "bmod_%s_%s_%s.fits" % (maskname,
band, suffix), options, header=header, overwrite=True,
lossy_compress=True)
'''Now create rectified solutions'''
dlam = Wavelength.grating_results(band)
hpp = np.array(Filters.hpp[band])
ll_fid = np.arange(hpp[0], hpp[1], dlam)
nspec = len(ll_fid)
rectified = np.zeros((2048, nspec), dtype=np.float32)
rectified_var = np.zeros((2048, nspec), dtype=np.float32)
rectified_itime = np.zeros((2048, nspec), dtype=np.float32)
from scipy.interpolate import interp1d
for i in xrange(2048):
ll = lam[1][i,:]
ss = sky_sub_out[i,:]
ok = np.isfinite(ll) & np.isfinite(ss) & (ll < hpp[1]) & (ll >
hpp[0])
if len(np.where(ok)[0]) < 100:
continue
f = interp1d(ll[ok], ss[ok], bounds_error=False)
rectified[i,:] = f(ll_fid)
f = interp1d(ll, Var[i,:], bounds_error=False)
rectified_var[i,:] = f(ll_fid)
f = interp1d(ll, itime[i,:], bounds_error=False)
rectified_itime[i,:] = f(ll_fid)
header["wat0_001"] = "system=world"
header["wat1_001"] = "type=linear"
header["wat2_001"] = "type=linear"
header["dispaxis"] = 1
header["dclog1"] = "Transform"
header["dc-flag"] = 0
header["type1"] = "AWAV"
header["cunit1"] = "Angstrom"
header["crval1"] = (ll_fid[0], "Starting wavelength Angstrom")
header["crval2"] = 0
header["crpix1"] = 1
header["crpix2"] = 1
header["cdelt1"] = 1
header["cdelt2"] = 1
header["cname1"] = "angstrom"
header["cname2"] = "pixel"
header["cd1_1"] = (dlam, "Angstrom/pixel")
header["cd1_2"] = 0
header["cd2_1"] = 0
header["cd2_2"] = (1, "pixel/pixel")
IO.writefits(rectified_itime, maskname,
"%s_rectified_itime_%s_%s.fits" % (maskname, band_name,
suffix), options, header=header, overwrite=True, lossy_compress=True)
IO.writefits(rectified, maskname, "%s_rectified_%s_%s.fits" % (maskname,
band_name, suffix), options, header=header, overwrite=True,
lossy_compress=True)
IO.writefits(rectified_var, maskname, "%s_rectified_var_%s_%s.fits" %
(maskname, band_name, suffix), options, header=header, overwrite=True,
#.........這裏部分代碼省略.........
示例6: handle_rectification
# 需要導入模塊: from MOSFIRE import IO [as 別名]
# 或者: from MOSFIRE.IO import writefits [as 別名]
#.........這裏部分代碼省略.........
header["cunit1"] = "Angstrom"
header["crval1"] = ll[0]
header["crval2"] = -solution["eps_img"].shape[0]/2 - pixel_dist
header["crpix1"] = 1
header["crpix2"] = 1
header["cdelt1"] = 1
header["cdelt2"] = 1
header["cname1"] = "angstrom"
header["cname2"] = "pixel"
header["cd1_1"] = ll[1]-ll[0]
header["cd1_2"] = 0
header["cd2_1"] = 0
header["cd2_2"] = 1
S = output.shape
img = solution["eps_img"]
std = solution["sd_img"]
tms = solution["itime_img"]
for i_solution in xrange(1,len(all_solutions)):
print "Combining solution %i" %i_solution
solution = all_solutions[i_solution][i_slit]
img += solution["eps_img"]
std += solution["sd_img"]
tms += solution["itime_img"]
output = np.append(output, img, 0)
output = np.append(output, np.nan*np.zeros((3,S[1])), 0)
snrs = np.append(snrs, img*tms/std, 0)
snrs = np.append(snrs, np.nan*np.zeros((3,S[1])), 0)
sdout = np.append(sdout, std, 0)
sdout = np.append(sdout, np.nan*np.zeros((3,S[1])), 0)
itout = np.append(itout, tms, 0)
itout = np.append(itout, np.nan*np.zeros((3,S[1])), 0)
header['bunit'] = ('electron/second', 'electron power')
IO.writefits(img, maskname,
"{0}_{1}_{2}_eps.fits".format(maskname, band, target_name), options,
overwrite=True, header=header, lossy_compress=False)
header['bunit'] = ('electron/second', 'sigma/itime')
IO.writefits(std/tms, maskname,
"{0}_{1}_{2}_sig.fits".format(maskname, band, target_name), options,
overwrite=True, header=header, lossy_compress=False)
header['bunit'] = ('second', 'exposure time')
IO.writefits(tms, maskname,
"{0}_{1}_{2}_itime.fits".format(maskname, band, target_name), options,
overwrite=True, header=header, lossy_compress=False)
header['bunit'] = ('', 'SNR')
IO.writefits(img*tms/std, maskname,
"{0}_{1}_{2}_snrs.fits".format(maskname, band, target_name), options,
overwrite=True, header=header, lossy_compress=False)
header = EPS[0].copy()
header["wat0_001"] = "system=world"
header["wat1_001"] = "wtype=linear"
header["wat2_001"] = "wtype=linear"
header["dispaxis"] = 1
header["dclog1"] = "Transform"
header["dc-flag"] = 0
header["ctype1"] = "AWAV"
header["cunit1"] = ("Angstrom", 'Start wavelength')
header["crval1"] = ll[0]
header["crval2"] = 1
header["crpix1"] = 1
header["crpix2"] = 1
header["cdelt1"] = 1
header["cdelt2"] = 1
header["cname1"] = "angstrom"
header["cname2"] = "pixel"
header["cd1_1"] = (ll[1]-ll[0], 'Angstrom/pixel')
header["cd1_2"] = 0
header["cd2_1"] = 0
header["cd2_2"] = 1
header["bunit"] = "ELECTRONS/SECOND"
IO.writefits(output, maskname, "{0}_{1}_eps.fits".format(maskname,
band), options, overwrite=True, header=header,
lossy_compress=False)
header["bunit"] = ""
IO.writefits(snrs, maskname, "{0}_{1}_snrs.fits".format(maskname,
band), options, overwrite=True, header=header,
lossy_compress=False)
header["bunit"] = "ELECTRONS/SECOND"
IO.writefits(sdout/itout, maskname, "{0}_{1}_sig.fits".format(maskname,
band), options, overwrite=True, header=header,
lossy_compress=False)
header["bunit"] = "SECOND"
IO.writefits(itout, maskname, "{0}_{1}_itime.fits".format(maskname,
band), options, overwrite=True, header=header,
lossy_compress=False)