本文整理匯總了Python中MOSFIRE.IO.readfits方法的典型用法代碼示例。如果您正苦於以下問題:Python IO.readfits方法的具體用法?Python IO.readfits怎麽用?Python IO.readfits使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類MOSFIRE.IO
的用法示例。
在下文中一共展示了IO.readfits方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: imcombine
# 需要導入模塊: from MOSFIRE import IO [as 別名]
# 或者: from MOSFIRE.IO import readfits [as 別名]
def imcombine(filelist, maskname, fname, options, sum_type):
""" combine the images in file list into fname.
Sum type:
rate -- filelist is in cnt/s
ivar-rate -- filelist is in s/cnt
snr-rate -- filelist is in SNR
"""
ARR = None
hdr = None
i = 1
itime = 0
for file in filelist:
this_hdr, img = IO.readfits(file)
cards = this_hdr.ascardlist()
thisitime = this_hdr["truitime"]
itime += thisitime
if ARR is None:
ARR = np.zeros(img.shape)
if sum_type == "rate":
ARR += img * thisitime
if sum_type == "ivar-rate":
ARR += thisitime / img
if sum_type == "snr-rate":
ARR += img * thisitime
if hdr is None:
hdr = this_hdr
hdr.update("fno%2.2i" % i, file, "--")
for card in cards:
key, value, comment = (card.key, card.value, card.comment)
if hdr.has_key(key) and hdr[key] != value:
key = key + ("_img%2.2i" % i)
if len(key) > 8:
key = "HIERARCH " + key
try:
hdr.update(key, value, comment)
except ValueError:
pass
hdr.update("itime", itime, "Itime for %i rectified images" % len(filelist))
if sum_type == "rate":
ARR /= itime
if sum_type == "ivar-rate":
ARR = itime / ARR
if sum_type == "snr-rate":
ARR /= itime
IO.writefits(ARR, maskname, fname, options, header=hdr, overwrite=True, lossy_compress=True)
示例2: audit
# 需要導入模塊: from MOSFIRE import IO [as 別名]
# 或者: from MOSFIRE.IO import readfits [as 別名]
def audit(filename):
header, data = IO.readfits(filename)
ll0 = header['crval1']
dlam = header['cd1_1']
ls = ll0 + dlam * np.arange(data.shape[1])
linelist = Wavelength.pick_linelist(header)
deltas = []
sigs = []
xpos = []
ys = []
for y in np.linspace(750, 1100, 30):
#for y in np.linspace(5, 640, 50):
sp = np.ma.array(data[y,:])
xs, sxs, sigmas = Wavelength.find_known_lines(linelist, ls, sp,
Options.wavelength)
xpos.append(xs)
ys.append([y] * len(xs))
deltas.append(xs - (linelist - ll0)/dlam)
sigs.append(sxs)
xpos, ys, deltas, sigs = map(np.array, [xpos, ys, deltas, sigs])
deltas[np.abs(deltas) > .75] = np.nan
sigs[np.abs(sigs) > .001] = np.nan
pl.clf()
size = 0.003/sigs
size[size > 30] = 30
size[size < 1] = 1
pl.scatter( xpos, ys, c=deltas, s=size)
pl.xlim([0, data.shape[1]])
pl.ylim([0, data.shape[0]])
pl.xlabel("Spectral pixel")
pl.ylabel("Spatial pixel")
pl.title("Night sky line deviation from solution [pixel]")
pl.colorbar()
pl.savefig("audit.pdf")
pdb.set_trace()
示例3: rectify
# 需要導入模塊: from MOSFIRE import IO [as 別名]
# 或者: from MOSFIRE.IO import readfits [as 別名]
def rectify(dname, lamdat, A, B, maskname, band, wavoptions,
longoptions):
header, data = IO.readfits(dname)
raw_img = data * Detector.gain / header['TRUITIME']
dlam = Wavelength.grating_results(band)
hpp = np.array(Filters.hpp[band])
ll_fid = np.arange(hpp[0], hpp[1], dlam)
rectified = np.zeros((2048, len(ll_fid)))
from scipy.interpolate import interp1d
for i in xrange(2048):
ll = lamdat[i,:]
ss = raw_img[i,:]
ok = np.isfinite(ll) & np.isfinite(ss) & (ll < hpp[1]) & (ll >
hpp[0])
if len(np.where(ok)[0]) < 30:
continue
f = interp1d(ll[ok], ss[ok], bounds_error=False)
rectified[i,:] = f(ll_fid)
header.update("wat0_001", "system=world")
header.update("wat1_001", "wtype=linear")
header.update("wat2_001", "wtype=linear")
header.update("dispaxis", 1)
header.update("dclog1", "Transform")
header.update("dc-flag", 0)
header.update("ctype1", "AWAV")
header.update("cunit1", "Angstrom")
header.update("crval1", ll_fid[0])
header.update("crval2", 0)
header.update("crpix1", 1)
header.update("crpix2", 1)
header.update("cdelt1", 1)
header.update("cdelt2", 1)
header.update("cname1", "angstrom")
header.update("cname2", "pixel")
header.update("cd1_1", dlam)
header.update("cd1_2", 0)
header.update("cd2_1", 0)
header.update("cd2_2", 1)
header.update("object", "rectified [eps]")
IO.writefits(rectified, maskname, "rectified_%s" % (dname),
wavoptions, header=header, overwrite=True, lossy_compress=True)
示例4: apply_flat
# 需要導入模塊: from MOSFIRE import IO [as 別名]
# 或者: from MOSFIRE.IO import readfits [as 別名]
def apply_flat(scifilename, maskname, band):
''' Divides the contents of scifilename by the flat field and
overwrites scifilename with the same file divided by the flat
Args:
scifilename: Path to science file name.
maskname: The mask name
band: The filter bands
Results:
Overwrites scifilename where the data contents of the file
are divided by the pixel flat
'''
flat = IO.load_flat(maskname, band, {})
flat_data = flat[1].filled(1.0)
header, data = IO.readfits(scifilename)
print("Applying flat to file {0}".format(scifilename))
IO.writefits(data/flat_data, maskname, scifilename, {}, header=header,
overwrite=True)
示例5: handle_flats
# 需要導入模塊: from MOSFIRE import IO [as 別名]
# 或者: from MOSFIRE.IO import readfits [as 別名]
def handle_flats(flatlist, maskname, band, options, extension=None,edgeThreshold=450,lampOffList=None,longslit=None):
'''
handle_flats is the primary entry point to the Flats module.
handle_flats takes a list of individual exposure FITS files and creates:
1. A CRR, dark subtracted, pixel-response flat file.
2. A set of polynomials that mark the edges of a slit
Inputs:
flatlist:
maskname: The name of a mask
band: A string indicating the bandceil
Outputs:
file {maskname}/flat_2d_{band}.fits -- pixel response flat
file {maskname}/edges.np
'''
tick = time.time()
# Check
bpos = np.ones(92) * -1
#Retrieve the list of files to use for flat creation.
flatlist = IO.list_file_to_strings(flatlist)
# Print the filenames to Standard-out
for flat in flatlist:
info(str(flat))
#Determine if flat files headers are in agreement
for fname in flatlist:
hdr, dat, bs = IO.readmosfits(fname, options, extension=extension)
try: bs0
except: bs0 = bs
if np.any(bs0.pos != bs.pos):
print "bs0: "+str(bs0.pos)+" bs: "+str(bs.pos)
error("Barset do not seem to match")
raise Exception("Barsets do not seem to match")
if hdr["filter"] != band:
error ("Filter name %s does not match header filter name "
"%s in file %s" % (band, hdr["filter"], fname))
raise Exception("Filter name %s does not match header filter name "
"%s in file %s" % (band, hdr["filter"], fname))
for i in xrange(len(bpos)):
b = hdr["B{0:02d}POS".format(i+1)]
if bpos[i] == -1:
bpos[i] = b
else:
if bpos[i] != b:
error("Bar positions are not all the same in "
"this set of flat files")
raise Exception("Bar positions are not all the same in "
"this set of flat files")
bs = bs0
# Imcombine the lamps ON flats
info("Attempting to combine previous files")
combine(flatlist, maskname, band, options)
# Imcombine the lamps OFF flats and subtract the off from the On sets
if lampOffList != None:
#Retrieve the list of files to use for flat creation.
lampOffList = IO.list_file_to_strings(lampOffList)
# Print the filenames to Standard-out
for flat in lampOffList:
info(str(flat))
print "Attempting to combine Lamps off data"
combine(lampOffList, maskname, band, options, lampsOff=True)
combine_off_on( maskname, band, options)
debug("Combined '%s' to '%s'" % (flatlist, maskname))
info("Comgined to '%s'" % (maskname))
path = "combflat_2d_%s.fits" % band
(header, data) = IO.readfits(path, use_bpm=True)
info("Flat written to %s" % path)
# Edge Trace
if bs.long_slit:
info( "Long slit mode recognized")
info( "Central row position: "+str(longslit["row_position"]))
info( "Upper and lower limits: "+str(longslit["yrange"][0])+" "+str(longslit["yrange"][1]))
results = find_longslit_edges(data,header, bs, options, edgeThreshold=edgeThreshold, longslit=longslit)
elif bs.long2pos_slit:
info( "Long2pos mode recognized")
results = find_long2pos_edges(data,header, bs, options, edgeThreshold=edgeThreshold, longslit=longslit)
else:
results = find_and_fit_edges(data, header, bs, options,edgeThreshold=edgeThreshold)
results[-1]["maskname"] = maskname
results[-1]["band"] = band
np.save("slit-edges_{0}".format(band), results)
save_ds9_edges(results, options)
# Generate Flat
out = "pixelflat_2d_%s.fits" % (band)
if lampOffList != None:
#.........這裏部分代碼省略.........
示例6: handle_background
# 需要導入模塊: from MOSFIRE import IO [as 別名]
# 或者: from MOSFIRE.IO import readfits [as 別名]
def handle_background(filelist, wavename, maskname, band_name, options, shifts=None, plan=None, extension=None):
'''
Perform difference imaging and subtract residual background.
The plan looks something like: [['A', 'B']]
In this case, the number of output files is equal to the length of the list (1).
If you choose to use an ABA'B' pattern then the plan will be: [["A", "B"], ["A'", "B'"]]
the background subtraction code will make and handle two files, "A-B" and "A'-B'".
'''
global header, bs, edges, data, Var, itime, lam, sky_sub_out, sky_model_out, band
band = band_name
flatname = "pixelflat_2d_%s.fits" % band_name
hdr, flat = IO.readfits("pixelflat_2d_%s.fits" % (band_name), options)
if np.abs(np.median(flat) - 1) > 0.1:
raise Exception("Flat seems poorly behaved.")
'''
This next section of the code figures out the observing plan
and then deals with the bookeeping of sending the plan
to the background subtracter.
'''
hdrs = []
epss = {}
vars = {}
bss = []
times = {}
Nframes = []
i = 0
header = pf.Header()
for i in xrange(len(filelist)):
fl = filelist[i]
files = IO.list_file_to_strings(fl)
print "Combining"
if shifts is None: shift = None
else: shift = shifts[i]
hdr, electron, var, bs, time, Nframe = imcombine(files, maskname,
options, flat, outname="%s.fits" % (fl),
shifts=shift, extension=extension)
hdrs.append(hdr)
header = merge_headers(header, hdr)
epss[hdr['FRAMEID']] = electron/time
vars[hdr['FRAMEID']] = var
times[hdr['FRAMEID']] = time
bss.append(bs)
Nframes.append(Nframe)
positions = {}
i = 0
for h in hdrs:
positions[h['FRAMEID']] = i
i += 1
posnames = set(positions.keys())
if plan is None:
plan = guess_plan_from_positions(posnames)
num_outputs = len(plan)
edges, meta = IO.load_edges(maskname, band, options)
lam = IO.readfits(wavename, options)
bs = bss[0]
for i in xrange(num_outputs):
posname0 = plan[i][0]
posname1 = plan[i][1]
print "Handling %s - %s" % (posname0, posname1)
data = epss[posname0] - epss[posname1]
Var = vars[posname0] + vars[posname1]
itime = np.mean([times[posname0], times[posname1]], axis=0)
p = Pool()
solutions = p.map(background_subtract_helper, xrange(len(bs.ssl)))
p.close()
write_outputs(solutions, itime, header, maskname, band, plan[i], options)
示例7: handle_rectification
# 需要導入模塊: from MOSFIRE import IO [as 別名]
# 或者: from MOSFIRE.IO import readfits [as 別名]
def handle_rectification(maskname, in_files, wavename, band_pass, barset_file, options,
commissioning_shift=3.0):
'''Handle slit rectification and coaddition.
Args:
maskname: The mask name string
in_files: List of stacked spectra in electron per second. Will look
like ['electrons_Offset_1.5.txt.fits', 'electrons_Offset_-1.5.txt.fits']
wavename: path (relative or full) to the wavelength stack file, string
band_pass: Band pass name, string
barset_file: Path to a mosfire fits file containing the full set of
FITS extensions for the barset. It can be any file in the list
of science files.
Returns:
None
Writes files:
[maskname]_[band]_[object name]_eps.fits --
The rectified, background subtracted, stacked eps spectrum
[maskname]_[band]_[object name]_sig.fits --
Rectified, background subtracted, stacked weight spectrum (STD/itime)
[maskname]_[band]_[object_name]_itime.fits
Rectified, CRR stacked integration time spectrum
[maskname]_[band]_[object_name]_snrs.fits
Rectified signal to noise spectrum
'''
global edges, dats, vars, itimes, shifts, lambdas, band, fidl, all_shifts
band = band_pass
dlambda = Wavelength.grating_results(band)
hpp = Filters.hpp[band]
fidl = np.arange(hpp[0], hpp[1], dlambda)
lambdas = IO.readfits(wavename, options)
if np.any(lambdas[1].data < 0) or np.any(lambdas[1].data > 29000):
print "***********WARNING ***********"
print "The file {0} may not be a wavelength file.".format(wavename)
print "Check before proceeding."
print "***********WARNING ***********"
edges, meta = IO.load_edges(maskname, band, options)
shifts = []
posnames = []
postoshift = {}
for file in in_files:
print ":: ", file
II = IO.read_drpfits(maskname, file, options)
off = np.array((II[0]["decoff"], II[0]["raoff"]),dtype=np.float64)
if "yoffset" in II[0]:
off = -II[0]["yoffset"]
else:
# Deal with data taken during commissioning
if II[0]["frameid"] == 'A': off = 0.0
else: off = commissioning_shift
try: off0
except: off0 = off
shift = off - off0
shifts.append(shift)
posnames.append(II[0]["frameid"])
postoshift[II[0]['frameid']] = shift
print "Position {0} shift: {1:2.2f} as".format(off, shift)
plans = Background.guess_plan_from_positions(set(posnames))
all_shifts = []
for plan in plans:
to_append = []
for pos in plan:
to_append.append(postoshift[pos])
all_shifts.append(to_append)
# Reverse the elements in all_shifts to deal with an inversion
all_shifts.reverse()
theBPM = IO.badpixelmask()
all_solutions = []
cntr = 0
for plan in plans:
p0 = plan[0].replace("'", "p")
p1 = plan[1].replace("'", "p")
suffix = "%s-%s" % (p0,p1)
print "Handling plan %s" % suffix
fname = "bsub_{0}_{1}_{2}.fits".format(maskname,band,suffix)
EPS = IO.read_drpfits(maskname, fname, options)
EPS[1] = np.ma.masked_array(EPS[1], theBPM, fill_value=0)
#.........這裏部分代碼省略.........
示例8: slice
# 需要導入模塊: from MOSFIRE import IO [as 別名]
# 或者: from MOSFIRE.IO import readfits [as 別名]
import numpy as np
import time
import pylab as pl
import scipy as sp
from scipy import interpolate as II
import spline
import MOSFIRE.Options as options
from MOSFIRE import IO, Fit, Wavelength
path = "/scr2/mosfire/c9_npk/npk_calib4_q1700_pa_0/"
mdat = IO.readmosfits(path + "m110323_2737.fits")
fdat = IO.readfits(path + "pixelflat_2d_H.fits")
ldat = IO.readfits(path + "lambda_solution_m110323_2737.fits")
dat = mdat[1]/fdat[1]
lam = ldat[1]
yroi=slice(707,736)
slit = dat[yroi,:]
lslit = lam[yroi,:]
DRAW = False
if DRAW:
pl.figure(1)
pl.clf()
pl.subplot(2,2,1)
lamroi = slice(500,600)
示例9: handle_flats
# 需要導入模塊: from MOSFIRE import IO [as 別名]
# 或者: from MOSFIRE.IO import readfits [as 別名]
def handle_flats(flatlist, maskname, band, options, extension=None):
'''
handle_flats is the primary entry point to the Flats module.
handle_flats takes a list of individual exposure FITS files and creates:
1. A CRR, dark subtracted, pixel-response flat file.
2. A set of polynomials that mark the edges of a slit
Inputs:
flatlist: Either a string of an input file or a list of file names
maskname: The name of a mask
band: A string indicating the bandceil
Outputs:
file {maskname}/flat_2d_{band}.fits -- pixel response flat
file {maskname}/edges.np
'''
tick = time.time()
# Check
bpos = np.ones(92) * -1
flatlist = IO.list_file_to_strings(flatlist)
print flatlist
for fname in flatlist:
hdr, dat, bs = IO.readmosfits(fname, options, extension=extension)
try: bs0
except: bs0 = bs
if np.any(bs0.pos != bs.pos):
raise Exception("Barsets do not seem to match")
if hdr["filter"] != band:
print ("Filter name %s does not match header filter name "
"%s in file %s" % (band, hdr["filter"], fname))
for i in xrange(len(bpos)):
b = hdr["B{0:02d}POS".format(i+1)]
if bpos[i] == -1:
bpos[i] = b
else:
if bpos[i] != b:
raise Exception("Bar positions are not all the same in "
"this set of flat files")
bs = bs0
# Imcombine
if True:
print "Attempting to combine: ", flatlist
combine(flatlist, maskname, band, options)
print "Combined '%s' to '%s'" % (flatlist, maskname)
path = "combflat_2d_%s.fits" % band
(header, data) = IO.readfits(path, use_bpm=True)
print "Flat written to %s" % path
# Edge Trace
results = find_and_fit_edges(data, header, bs, options)
results[-1]["maskname"] = maskname
results[-1]["band"] = band
np.save("slit-edges_{0}".format(band), results)
save_ds9_edges(results, options)
# Generate Flat
out = "pixelflat_2d_%s.fits" % (band)
make_pixel_flat(data, results, options, out, flatlist)
print "Pixel flat took {0:6.4} s".format(time.time()-tick)
示例10: go
# 需要導入模塊: from MOSFIRE import IO [as 別名]
# 或者: from MOSFIRE.IO import readfits [as 別名]
def go(fname):
global plot_arr
print fname
(header, data) = IO.readfits(fname)
bs = CSU.Barset()
bs.set_header(header)
bars = []
means = []
sds = []
deltas = []
deltas_mm = []
poss = []
poss_mm = []
poss_y = []
request = []
qs = []
bars = range(1, 93)
fit_fun = Fit.residual_single
for bar in bars:
pos = bs.get_bar_pix(bar)
if bar % 8 == 0:
print "%2.0i: (%7.2f, %7.2f)" % (bar, pos[0], pos[1])
if is_odd(bar):
if (bs.pos[bar] - bs.pos[bar-1]) < 2.7:
fit_fun = Fit.residual_pair
else:
fit_fun = Fit.residual_single
width = 19
[[xslice, yslice],extent,ystart] = make_slice(pos,0,width,30)
if not is_in_bounds(extent):
fits = [0,0,0,0,0]
[ff,ok] = [np.poly1d(0,0), []]
means.append(fits)
sds.append(fits)
drop_this = True
else:
drop_this = False
fits = []
ys = np.arange(-10,10, dtype=np.float32)
for i in ys:
tofit = data[ystart-i, xslice]
y = median_tails(tofit)
ps = Fit.do_fit(y, fit_fun)
fits.append(ps[0])
fits = np.array(fits)
fits[:,1] += 1
# fit to the ridgeline
[ff, ok] = fit_line_with_sigclip(ys, fits[:,1])
m = [np.mean(fits[:,i]) for i in range(5)]
s = [np.std(fits[:,i]) for i in range(5)]
means.append(m)
sds.append(s)
slit_center_offset = pos[1] - ystart
fc = ff(slit_center_offset)
slit_center_pos = np.float(extent[0] + fc )
if drop_this:
poss.append(NaN)
poss_y.append(NaN)
poss_mm.append(NaN)
else:
poss.append(slit_center_pos)
poss_y.append(ystart)
poss_mm.append(CSU.csu_pix_to_mm_poly(slit_center_pos, ystart)[0])
delta = np.float(slit_center_pos - pos[0])
if drop_this:
deltas.append(NaN)
deltas_mm.append(NaN)
else:
deltas.append(delta)
b = CSU.csu_pix_to_mm_poly(slit_center_pos + delta, ystart)[0]
deltas_mm.append(b - poss_mm[-1])
q = np.float(np.degrees(np.tan(ff(1)-ff(0))))
if drop_this: qs.append(NaN)
qs.append(q)
means = np.array(means)
f = lambda x: np.array(x).ravel()
sds = f(sds)
deltas = f(deltas)
poss = f(poss)
poss_y = f(poss_y)
#.........這裏部分代碼省略.........
示例11: go
# 需要導入模塊: from MOSFIRE import IO [as 別名]
# 或者: from MOSFIRE.IO import readfits [as 別名]
def go(fname):
global plot_arr
print fname
(header, data) = IO.readfits(fname)
bs = CSU.Barset()
bs.set_header(header)
cntfit = 1
for i in range(1,8):
continue
pl.figure(i)
pl.clf()
first_time = True
bars = []
means = []
sds = []
deltas = []
deltas_mm = []
poss = []
poss_mm = []
poss_y = []
request = []
qs = []
bars = range(1, 93)
for bar in bars:
pos = bs.get_bar_pix(bar)
if bar % 8 == 0:
print "%2.0i: (%7.2f, %7.2f)" % (bar, pos[0], pos[1])
width = 19
[[xslice, yslice],extent,ystart] = make_slice(pos,0,width,30)
if not is_in_bounds(extent):
fits = [0,0,0,0,0]
[ff,ok] = [np.poly1d(0,0), []]
means.append(fits)
sds.append(fits)
drop_this = True
else:
drop_this = False
fits = []
ys = np.arange(-10,10, dtype=np.float32)
for i in ys:
tofit = data[ystart-i, xslice]
y = median_tails(tofit)
ps = Fit.do_fit(y, Fit.residual_single)
fits.append(ps[0])
fits = np.array(fits)
fits[:,1] += 1
# fit to the ridgeline
[ff, ok] = fit_line_with_sigclip(ys, fits[:,1])
m = [np.mean(fits[:,i]) for i in range(5)]
s = [np.std(fits[:,i]) for i in range(5)]
means.append(m)
sds.append(s)
#if bar == 44: start_shell()
#if bar == 43: start_shell()
# End of measurement logic, PLOTS
plot_arr = [12, 8, cntfit]
cntfit += 1
if False:
plot_stamps(data[yslice, xslice], ps[0])
y0 = median_tails(data[ystart, xslice])
plot_linefits(y0, ff)
plot_ridgeline(fits, ok, ys, ff, bar)
plot_widths(fits, ok, ys)
# End of plots, BOOKEEPING
slit_center_offset = pos[1] - ystart
fc = ff(slit_center_offset)
slit_center_pos = np.float(extent[0] + fc )
if drop_this:
poss.append(NaN)
poss_y.append(NaN)
poss_mm.append(NaN)
else:
poss.append(slit_center_pos)
poss_y.append(ystart)
poss_mm.append(CSU.csu_pix_to_mm_poly(slit_center_pos, ystart)[0])
delta = np.float(slit_center_pos - pos[0])
if drop_this:
deltas.append(NaN)
deltas_mm.append(NaN)
else:
deltas.append(delta)
#.........這裏部分代碼省略.........
示例12: go
# 需要導入模塊: from MOSFIRE import IO [as 別名]
# 或者: from MOSFIRE.IO import readfits [as 別名]
def go(maskname,
band,
filenames,
wavefile,
wavoptions,
longoptions,
use_flat=False):
'''
The go command is the main entry point into this module.
Inputs:
maskname: String of the mask name
band: String of 'Y', 'J', 'H', or 'K'
filenames: List of filenames to reduce
wavefile: String of path to FITS file with the wavelength solution
wavoptions: The Wavelength Options dictionary
longoptions: Dictionary containing:
{'yrange': The pixel range to extract over
'row_position': The row to solve the initial wavelength solution on}
use_flat: Boolean False [default] means to use no flat field
Boolean True means to divide by the pixelflat
'''
wavename = Wavelength.filelist_to_wavename(filenames, band, maskname,
wavoptions).rstrip(".fits")
print "Wavefile: {0}".format(wavefile)
lamhdr, lamdat = IO.readfits(wavefile)
positions = []
objname = None
for listfile in filenames:
fnames = IO.list_file_to_strings(listfile)
if len(fnames) != 1:
raise Exception("I currently expect only one file per position. Remove multiple entries and try again")
header, data, bs = IO.readmosfits(fnames[0], wavoptions)
if objname is None:
objname = header["object"]
if objname != header["object"]:
print ("Trying to combine longslit stack of object {0} "
"with object {1}".format(objname, header["object"]))
print("{0:18s} {1:30s} {2:2s} {3:4.1f}".format(file, header["object"],
header["frameid"], header["yoffset"]))
positions.append([fnames[0], header, data, bs])
print("{0:2g} nod positions found. Producing stacked difference" \
" image.".format(len(positions)))
for i in xrange(len(positions)-1):
A = positions[i]
B = positions[i+1]
print("----------- -----".format(A,B))
dname, varname = imdiff(A, B, maskname, band, header, wavoptions)
if use_flat:
apply_flat(dname, maskname, band)
apply_flat(varname, maskname, band)
rectify(dname, lamdat, A, B, maskname, band, wavoptions,
longoptions)
rectify(varname, lamdat, A, B, maskname, band, wavoptions,
longoptions)
print dname
dname, vname = imdiff(B, A, maskname, band, header, wavoptions)
if use_flat:
apply_flat(dname, maskname, band)
apply_flat(vname, maskname, band)
rectify(dname, lamdat, B, A, maskname, band, wavoptions,
longoptions)
rectify(vname, lamdat, B, A, maskname, band, wavoptions,
longoptions)
if False:
fname = os.path.join(path, wavename + ".fits")
B = IO.readfits(fname)
B = [fname, B[0], B[1]]
for i in xrange(len(positions)):
A = positions[i]
imdiff(A, B, maskname, band, wavoptions)
rectify(path, dname, lamdat, A, B, maskname, band, wavoptions,
longoptions)
imdiff(B, A, maskname, band, wavoptions)
rectify(path, dname, lamdat, B, A, maskname, band, wavoptions,
longoptions)
示例13: slice
# 需要導入模塊: from MOSFIRE import IO [as 別名]
# 或者: from MOSFIRE.IO import readfits [as 別名]
if x0 < 0: x0 = 0
x1 = pos[0] + w
if x1 > 2047: x1 = 2047
if x0 > x1: x0 = x1
xs = slice(x0, x1)
y0 = pos[1]-h
if y0 < 0: y0 = 0
y1 = pos[1]+h
if y1 > 2047: y1 = 2047
if y0 > y1: y0 = y1
ys = slice(y0,y1)
return [[xs,ys],[x0,x1,y0,y1]]
(header, data) = IO.readfits("/users/npk/desktop/c8/m101029_0233.ref.fits")
(header2, data2) = IO.readfits("/users/npk/desktop/c8/m101029_0425.ref.fits")
(header3, data3) = IO.readfits("/users/npk/desktop/c8/m101029_0427.ref.fits")
data = data3
deg = np.pi/180.
np.set_printoptions(precision=3)
np.set_printoptions(suppress=True)
reload(CSU)
reload(IO)
reload(Fit)
reload(Detector)
示例14:
# 需要導入模塊: from MOSFIRE import IO [as 別名]
# 或者: from MOSFIRE.IO import readfits [as 別名]
import scipy.ndimage
import matplotlib
import pyfits as pf
import MOSFIRE.Options as options
from MOSFIRE import IO, Fit, Wavelength
pl.ion()
path = "/users/npk/desktop/c9_reduce/npk_calib3_q1700_pa_0/"
path = "/scr2/mosfire/c9_npk/npk_calib3_q1700_pa_0/"
path = "/scr2/mosfire/firstlight/NGC5053"
mdat = IO.readmosfits(path + "m120406_0291.fits")
fdat = IO.readfits(path + "pixelflat_2d_J.fits")
ldat = IO.readfits(path + "lambda_solution_m120406_0291.fits")
gain = 2.15
dat = mdat[1]/fdat[1] * gain
dat = mdat[1] * gain
lam = ldat[1]
dat[np.logical_not(np.isfinite(dat))] = 0.
yroi=slice(86, 160)
yroi=slice(173, 203)
yroi=slice(1015, 1090)
xroi=slice(0,2048)