當前位置: 首頁>>代碼示例>>Python>>正文


Python IO.readfits方法代碼示例

本文整理匯總了Python中MOSFIRE.IO.readfits方法的典型用法代碼示例。如果您正苦於以下問題:Python IO.readfits方法的具體用法?Python IO.readfits怎麽用?Python IO.readfits使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在MOSFIRE.IO的用法示例。


在下文中一共展示了IO.readfits方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: imcombine

# 需要導入模塊: from MOSFIRE import IO [as 別名]
# 或者: from MOSFIRE.IO import readfits [as 別名]
def imcombine(filelist, maskname, fname, options, sum_type):
    """ combine the images in file list into fname.

    Sum type:
        rate -- filelist is in cnt/s
        ivar-rate -- filelist is in s/cnt
        snr-rate -- filelist is in SNR
    """

    ARR = None
    hdr = None
    i = 1

    itime = 0

    for file in filelist:

        this_hdr, img = IO.readfits(file)
        cards = this_hdr.ascardlist()

        thisitime = this_hdr["truitime"]
        itime += thisitime

        if ARR is None:
            ARR = np.zeros(img.shape)

        if sum_type == "rate":
            ARR += img * thisitime
        if sum_type == "ivar-rate":
            ARR += thisitime / img
        if sum_type == "snr-rate":
            ARR += img * thisitime

        if hdr is None:
            hdr = this_hdr
        hdr.update("fno%2.2i" % i, file, "--")
        for card in cards:
            key, value, comment = (card.key, card.value, card.comment)

            if hdr.has_key(key) and hdr[key] != value:
                key = key + ("_img%2.2i" % i)

            if len(key) > 8:
                key = "HIERARCH " + key

            try:
                hdr.update(key, value, comment)
            except ValueError:
                pass

    hdr.update("itime", itime, "Itime for %i rectified images" % len(filelist))
    if sum_type == "rate":
        ARR /= itime
    if sum_type == "ivar-rate":
        ARR = itime / ARR
    if sum_type == "snr-rate":
        ARR /= itime

    IO.writefits(ARR, maskname, fname, options, header=hdr, overwrite=True, lossy_compress=True)
開發者ID:billfreeman44,項目名稱:MosfireDRP,代碼行數:61,代碼來源:Combine.py

示例2: audit

# 需要導入模塊: from MOSFIRE import IO [as 別名]
# 或者: from MOSFIRE.IO import readfits [as 別名]
def audit(filename):
    
    header, data = IO.readfits(filename)


    ll0 = header['crval1']
    dlam = header['cd1_1']

    ls = ll0 + dlam * np.arange(data.shape[1])

    linelist = Wavelength.pick_linelist(header)


    deltas = []
    sigs = []
    xpos = []
    ys = []
    for y in np.linspace(750, 1100, 30):
    #for y in np.linspace(5, 640, 50):
        sp = np.ma.array(data[y,:])

        xs, sxs, sigmas = Wavelength.find_known_lines(linelist, ls, sp,
                Options.wavelength)

        xpos.append(xs)
        ys.append([y] * len(xs))

        deltas.append(xs - (linelist - ll0)/dlam)
        sigs.append(sxs)


    xpos, ys, deltas, sigs = map(np.array, [xpos, ys, deltas, sigs])

    deltas[np.abs(deltas) > .75] = np.nan
    sigs[np.abs(sigs) > .001] = np.nan

    pl.clf()
    size = 0.003/sigs 
    size[size > 30] = 30
    size[size < 1] = 1
    pl.scatter( xpos, ys, c=deltas, s=size)
    pl.xlim([0, data.shape[1]])
    pl.ylim([0, data.shape[0]])
    pl.xlabel("Spectral pixel")
    pl.ylabel("Spatial pixel")
    pl.title("Night sky line deviation from solution [pixel]")
    pl.colorbar()

    pl.savefig("audit.pdf")
    
    pdb.set_trace()
開發者ID:Keck-DataReductionPipelines,項目名稱:MosfireDRP_preWMKO,代碼行數:53,代碼來源:audit.py

示例3: rectify

# 需要導入模塊: from MOSFIRE import IO [as 別名]
# 或者: from MOSFIRE.IO import readfits [as 別名]
def rectify(dname, lamdat, A, B, maskname, band, wavoptions, 
        longoptions):

    header, data = IO.readfits(dname)
    raw_img = data * Detector.gain / header['TRUITIME']

    dlam = Wavelength.grating_results(band)
    hpp = np.array(Filters.hpp[band]) 
    ll_fid = np.arange(hpp[0], hpp[1], dlam)

    rectified = np.zeros((2048, len(ll_fid)))

    from scipy.interpolate import interp1d

    for i in xrange(2048):
        ll = lamdat[i,:]
        ss = raw_img[i,:]
        ok = np.isfinite(ll) & np.isfinite(ss) & (ll < hpp[1]) & (ll >
                hpp[0])

        if len(np.where(ok)[0]) < 30:
            continue

        f = interp1d(ll[ok], ss[ok], bounds_error=False)
        rectified[i,:] = f(ll_fid)

    header.update("wat0_001", "system=world")
    header.update("wat1_001", "wtype=linear")
    header.update("wat2_001", "wtype=linear")
    header.update("dispaxis", 1)
    header.update("dclog1", "Transform")
    header.update("dc-flag", 0)
    header.update("ctype1", "AWAV")
    header.update("cunit1", "Angstrom")
    header.update("crval1", ll_fid[0])
    header.update("crval2", 0)
    header.update("crpix1", 1)
    header.update("crpix2", 1)
    header.update("cdelt1", 1)
    header.update("cdelt2", 1)
    header.update("cname1", "angstrom")
    header.update("cname2", "pixel")
    header.update("cd1_1", dlam)
    header.update("cd1_2", 0)
    header.update("cd2_1", 0)
    header.update("cd2_2", 1)


    header.update("object", "rectified [eps]")
    IO.writefits(rectified, maskname, "rectified_%s" % (dname), 
        wavoptions, header=header, overwrite=True, lossy_compress=True)
開發者ID:Keck-DataReductionPipelines,項目名稱:MosfireDRP_preWMKO,代碼行數:53,代碼來源:Longslit.py

示例4: apply_flat

# 需要導入模塊: from MOSFIRE import IO [as 別名]
# 或者: from MOSFIRE.IO import readfits [as 別名]
def apply_flat(scifilename, maskname, band):
    ''' Divides the contents of scifilename by the flat field and
        overwrites scifilename with the same file divided by the flat

        Args:
            scifilename: Path to science file name.
            maskname: The mask name
            band: The filter bands

        Results:
            Overwrites scifilename where the data contents of the file
                are divided by the pixel flat
    '''

    
    flat = IO.load_flat(maskname, band, {})
    flat_data = flat[1].filled(1.0)

    header, data = IO.readfits(scifilename)
    
    print("Applying flat to file {0}".format(scifilename))
    IO.writefits(data/flat_data, maskname, scifilename, {}, header=header,
        overwrite=True)
開發者ID:Keck-DataReductionPipelines,項目名稱:MosfireDRP_preWMKO,代碼行數:25,代碼來源:Longslit.py

示例5: handle_flats

# 需要導入模塊: from MOSFIRE import IO [as 別名]
# 或者: from MOSFIRE.IO import readfits [as 別名]
def handle_flats(flatlist, maskname, band, options, extension=None,edgeThreshold=450,lampOffList=None,longslit=None):
    '''
    handle_flats is the primary entry point to the Flats module.

    handle_flats takes a list of individual exposure FITS files and creates:
    1. A CRR, dark subtracted, pixel-response flat file.
    2. A set of polynomials that mark the edges of a slit

    Inputs:
    flatlist: 
    maskname: The name of a mask
    band: A string indicating the bandceil

    Outputs:

    file {maskname}/flat_2d_{band}.fits -- pixel response flat
    file {maskname}/edges.np
    '''

    tick = time.time()

    # Check
    bpos = np.ones(92) * -1

    #Retrieve the list of files to use for flat creation.
    flatlist = IO.list_file_to_strings(flatlist)
    # Print the filenames to Standard-out
    for flat in flatlist:
        info(str(flat))

    #Determine if flat files headers are in agreement
    for fname in flatlist:

        hdr, dat, bs = IO.readmosfits(fname, options, extension=extension)
        try: bs0
        except: bs0 = bs

        if np.any(bs0.pos != bs.pos):
            print "bs0: "+str(bs0.pos)+" bs: "+str(bs.pos)
            error("Barset do not seem to match")
            raise Exception("Barsets do not seem to match")

        if hdr["filter"] != band:
            error ("Filter name %s does not match header filter name "
                    "%s in file %s" % (band, hdr["filter"], fname))
            raise Exception("Filter name %s does not match header filter name "
                    "%s in file %s" % (band, hdr["filter"], fname))
        for i in xrange(len(bpos)):
            b = hdr["B{0:02d}POS".format(i+1)]
            if bpos[i] == -1:
                bpos[i] = b
            else:
                if bpos[i] != b:
                    error("Bar positions are not all the same in "
                            "this set of flat files")
                    raise Exception("Bar positions are not all the same in "
                            "this set of flat files")
    bs = bs0

    # Imcombine the lamps ON flats
    info("Attempting to combine previous files")
    combine(flatlist, maskname, band, options)

    # Imcombine the lamps OFF flats and subtract the off from the On sets
    if lampOffList != None: 
        #Retrieve the list of files to use for flat creation. 
        lampOffList = IO.list_file_to_strings(lampOffList)
        # Print the filenames to Standard-out
        for flat in lampOffList:
            info(str(flat))
        print "Attempting to combine Lamps off data"
        combine(lampOffList, maskname, band, options, lampsOff=True)
        combine_off_on( maskname, band, options)

    debug("Combined '%s' to '%s'" % (flatlist, maskname))
    info("Comgined to '%s'" % (maskname))
    path = "combflat_2d_%s.fits" % band
    (header, data) = IO.readfits(path, use_bpm=True)

    info("Flat written to %s" % path)

    # Edge Trace
    if bs.long_slit:
        info( "Long slit mode recognized")
        info( "Central row position:   "+str(longslit["row_position"]))
        info( "Upper and lower limits: "+str(longslit["yrange"][0])+" "+str(longslit["yrange"][1]))
        results = find_longslit_edges(data,header, bs, options, edgeThreshold=edgeThreshold, longslit=longslit)
    elif bs.long2pos_slit:
        info( "Long2pos mode recognized")
        results = find_long2pos_edges(data,header, bs, options, edgeThreshold=edgeThreshold, longslit=longslit)
    else:
        results = find_and_fit_edges(data, header, bs, options,edgeThreshold=edgeThreshold)
    results[-1]["maskname"] = maskname
    results[-1]["band"] = band
    np.save("slit-edges_{0}".format(band), results)
    save_ds9_edges(results, options)

    # Generate Flat
    out = "pixelflat_2d_%s.fits" % (band)
    if lampOffList != None: 
#.........這裏部分代碼省略.........
開發者ID:themiyan,項目名稱:MosfireDRP_Themiyan,代碼行數:103,代碼來源:Flats.py

示例6: handle_background

# 需要導入模塊: from MOSFIRE import IO [as 別名]
# 或者: from MOSFIRE.IO import readfits [as 別名]
def handle_background(filelist, wavename, maskname, band_name, options, shifts=None, plan=None, extension=None): 
    '''
    Perform difference imaging and subtract residual background.

    The plan looks something like: [['A', 'B']]
    In this case, the number of output files is equal to the length of the list (1).

    If you choose to use an ABA'B' pattern then the plan will be: [["A", "B"], ["A'", "B'"]]
    the background subtraction code will make and handle two files, "A-B" and "A'-B'".
    '''
    
    global header, bs, edges, data, Var, itime, lam, sky_sub_out, sky_model_out, band

    band = band_name

    flatname = "pixelflat_2d_%s.fits" % band_name
    hdr, flat = IO.readfits("pixelflat_2d_%s.fits" % (band_name), options)

    if np.abs(np.median(flat) - 1) > 0.1:
        raise Exception("Flat seems poorly behaved.")

    '''
        This next section of the code figures out the observing plan
        and then deals with the bookeeping of sending the plan
        to the background subtracter.
    '''

    hdrs = []
    epss = {}
    vars = {}
    bss = []
    times = {}
    Nframes = []

    i = 0
    header = pf.Header()
    for i in xrange(len(filelist)):
        fl = filelist[i]
        files = IO.list_file_to_strings(fl)
        print "Combining"
        if shifts is None: shift = None
        else: shift = shifts[i]
        hdr, electron, var, bs, time, Nframe = imcombine(files, maskname,
            options, flat, outname="%s.fits" % (fl),
            shifts=shift, extension=extension)

        hdrs.append(hdr) 
        header = merge_headers(header, hdr)
        epss[hdr['FRAMEID']] = electron/time
        vars[hdr['FRAMEID']] = var
        times[hdr['FRAMEID']] = time
        bss.append(bs)
        Nframes.append(Nframe)

    
    positions = {}
    i = 0
    for h in hdrs:
        positions[h['FRAMEID']] = i
        i += 1
    
    posnames = set(positions.keys())
    if plan is None:
        plan = guess_plan_from_positions(posnames)

    num_outputs = len(plan)


    edges, meta = IO.load_edges(maskname, band, options)
    lam = IO.readfits(wavename, options)

    bs = bss[0]

    for i in xrange(num_outputs):
        posname0 = plan[i][0]
        posname1 = plan[i][1]
        print "Handling %s - %s" % (posname0, posname1)
        data = epss[posname0] - epss[posname1]
        Var = vars[posname0] + vars[posname1]
        itime = np.mean([times[posname0], times[posname1]], axis=0)

        p = Pool()
        solutions = p.map(background_subtract_helper, xrange(len(bs.ssl)))
        p.close()

        write_outputs(solutions, itime, header, maskname, band, plan[i], options)
開發者ID:Keck-DataReductionPipelines,項目名稱:MosfireDRP_preWMKO,代碼行數:88,代碼來源:Background.py

示例7: handle_rectification

# 需要導入模塊: from MOSFIRE import IO [as 別名]
# 或者: from MOSFIRE.IO import readfits [as 別名]
def handle_rectification(maskname, in_files, wavename, band_pass, barset_file, options,
        commissioning_shift=3.0):
    '''Handle slit rectification and coaddition.

    Args:
        maskname: The mask name string
        in_files: List of stacked spectra in electron per second. Will look
            like ['electrons_Offset_1.5.txt.fits', 'electrons_Offset_-1.5.txt.fits']
        wavename: path (relative or full) to the wavelength stack file, string
        band_pass: Band pass name, string
        barset_file: Path to a mosfire fits file containing the full set of
            FITS extensions for the barset. It can be any file in the list
            of science files.
    Returns:
        None

    Writes files:
        [maskname]_[band]_[object name]_eps.fits --
            The rectified, background subtracted, stacked eps spectrum
        [maskname]_[band]_[object name]_sig.fits --
            Rectified, background subtracted, stacked weight spectrum (STD/itime)
        [maskname]_[band]_[object_name]_itime.fits
            Rectified, CRR stacked integration time spectrum
        [maskname]_[band]_[object_name]_snrs.fits
            Rectified signal to noise spectrum
    '''

    global edges, dats, vars, itimes, shifts, lambdas, band, fidl, all_shifts
    band = band_pass

    
    dlambda = Wavelength.grating_results(band)

    hpp = Filters.hpp[band]
    fidl = np.arange(hpp[0], hpp[1], dlambda)

    lambdas = IO.readfits(wavename, options)

    if np.any(lambdas[1].data < 0) or np.any(lambdas[1].data > 29000):
        print "***********WARNING ***********"
        print "The file {0} may not be a wavelength file.".format(wavename)
        print "Check before proceeding."
        print "***********WARNING ***********"

    edges, meta = IO.load_edges(maskname, band, options)
    shifts = []

    posnames = []
    postoshift = {}
    
    for file in in_files:

        print ":: ", file
        II = IO.read_drpfits(maskname, file, options)

        off = np.array((II[0]["decoff"], II[0]["raoff"]),dtype=np.float64)
        if "yoffset" in II[0]:
            off = -II[0]["yoffset"]
        else:
            # Deal with data taken during commissioning
            if II[0]["frameid"] == 'A': off = 0.0
            else: off = commissioning_shift

        try: off0
        except: off0 = off

        shift = off - off0

        shifts.append(shift)
        posnames.append(II[0]["frameid"])
        postoshift[II[0]['frameid']] = shift
    
        print "Position {0} shift: {1:2.2f} as".format(off, shift)
    

    plans = Background.guess_plan_from_positions(set(posnames))

    all_shifts = []
    for plan in plans:
        to_append = []
        for pos in plan:
            to_append.append(postoshift[pos])

        all_shifts.append(to_append)

    # Reverse the elements in all_shifts to deal with an inversion
    all_shifts.reverse()

    theBPM = IO.badpixelmask()

    all_solutions = []
    cntr = 0
    for plan in plans:
        p0 = plan[0].replace("'", "p")
        p1 = plan[1].replace("'", "p")
        suffix = "%s-%s" % (p0,p1)
        print "Handling plan %s" % suffix
        fname = "bsub_{0}_{1}_{2}.fits".format(maskname,band,suffix)
        EPS = IO.read_drpfits(maskname, fname, options)
        EPS[1] = np.ma.masked_array(EPS[1], theBPM, fill_value=0)
#.........這裏部分代碼省略.........
開發者ID:followthesheep,項目名稱:MosfireDRP,代碼行數:103,代碼來源:Rectify.py

示例8: slice

# 需要導入模塊: from MOSFIRE import IO [as 別名]
# 或者: from MOSFIRE.IO import readfits [as 別名]
import numpy as np
import time

import pylab as pl
import scipy as sp
from scipy import interpolate as II
import spline

import MOSFIRE.Options as options
from MOSFIRE import IO, Fit, Wavelength

path = "/scr2/mosfire/c9_npk/npk_calib4_q1700_pa_0/"

mdat = IO.readmosfits(path + "m110323_2737.fits")
fdat = IO.readfits(path + "pixelflat_2d_H.fits")
ldat = IO.readfits(path + "lambda_solution_m110323_2737.fits")

dat = mdat[1]/fdat[1]
lam = ldat[1]

yroi=slice(707,736)
slit = dat[yroi,:]
lslit = lam[yroi,:]

DRAW = False
if DRAW:
    pl.figure(1)
    pl.clf()
    pl.subplot(2,2,1)
    lamroi = slice(500,600)
開發者ID:Keck-DataReductionPipelines,項目名稱:MosfireDRP_preWMKO,代碼行數:32,代碼來源:drp10.py

示例9: handle_flats

# 需要導入模塊: from MOSFIRE import IO [as 別名]
# 或者: from MOSFIRE.IO import readfits [as 別名]
def handle_flats(flatlist, maskname, band, options, extension=None):
    '''
    handle_flats is the primary entry point to the Flats module.

    handle_flats takes a list of individual exposure FITS files and creates:
    1. A CRR, dark subtracted, pixel-response flat file.
    2. A set of polynomials that mark the edges of a slit

    Inputs:
    flatlist: Either a string of an input file or a list of file names
    maskname: The name of a mask
    band: A string indicating the bandceil

    Outputs:

    file {maskname}/flat_2d_{band}.fits -- pixel response flat
    file {maskname}/edges.np
    '''

    tick = time.time()

    # Check
    bpos = np.ones(92) * -1

    
    flatlist = IO.list_file_to_strings(flatlist)

    print flatlist

    for fname in flatlist:

        hdr, dat, bs = IO.readmosfits(fname, options, extension=extension)
        try: bs0
        except: bs0 = bs

        if np.any(bs0.pos != bs.pos):
            raise Exception("Barsets do not seem to match")

        if hdr["filter"] != band:
            print ("Filter name %s does not match header filter name "
                    "%s in file %s" % (band, hdr["filter"], fname))
        for i in xrange(len(bpos)):
            b = hdr["B{0:02d}POS".format(i+1)]
            if bpos[i] == -1:
                bpos[i] = b
            else:
                if bpos[i] != b:
                    raise Exception("Bar positions are not all the same in "
                            "this set of flat files")
    bs = bs0
    # Imcombine
    if True:
        print "Attempting to combine: ", flatlist
        combine(flatlist, maskname, band, options)

        print "Combined '%s' to '%s'" % (flatlist, maskname)
    path = "combflat_2d_%s.fits" % band
    (header, data) = IO.readfits(path, use_bpm=True)

    print "Flat written to %s" % path


    # Edge Trace
    results = find_and_fit_edges(data, header, bs, options)
    results[-1]["maskname"] = maskname
    results[-1]["band"] = band
    np.save("slit-edges_{0}".format(band), results)
    save_ds9_edges(results, options)

    # Generate Flat
    out = "pixelflat_2d_%s.fits" % (band)
    make_pixel_flat(data, results, options, out, flatlist)
    print "Pixel flat took {0:6.4} s".format(time.time()-tick)
開發者ID:Keck-DataReductionPipelines,項目名稱:MosfireDRP_preWMKO,代碼行數:75,代碼來源:Flats.py

示例10: go

# 需要導入模塊: from MOSFIRE import IO [as 別名]
# 或者: from MOSFIRE.IO import readfits [as 別名]
def go(fname):
        global plot_arr

        print fname
        
        (header, data) = IO.readfits(fname)
        bs = CSU.Barset()
        bs.set_header(header)

        bars = []
        means = []
        sds = []
        deltas = []
        deltas_mm = []
        poss = []
        poss_mm = []
        poss_y = []
        request = []
        qs = []
        bars = range(1, 93)
        fit_fun = Fit.residual_single

        for bar in bars:
                pos = bs.get_bar_pix(bar)
                if bar % 8 == 0:
                        print "%2.0i: (%7.2f, %7.2f)" % (bar, pos[0], pos[1])


                if is_odd(bar):
                        if (bs.pos[bar] - bs.pos[bar-1]) < 2.7:
                                fit_fun = Fit.residual_pair
                        else:
                                fit_fun = Fit.residual_single

                width = 19 
                [[xslice, yslice],extent,ystart] = make_slice(pos,0,width,30)

                

                if not is_in_bounds(extent):
                        fits = [0,0,0,0,0]
                        [ff,ok] = [np.poly1d(0,0), []]
                        means.append(fits)
                        sds.append(fits)
                        drop_this = True
                else:
                        drop_this = False
                        fits = []
                        ys = np.arange(-10,10, dtype=np.float32)
                        for i in ys:
                                tofit = data[ystart-i, xslice]
                                y = median_tails(tofit)

                                ps = Fit.do_fit(y, fit_fun)
                                fits.append(ps[0])
                        
                        fits = np.array(fits)
                        fits[:,1] += 1

                        # fit to the ridgeline
                        [ff, ok] = fit_line_with_sigclip(ys, fits[:,1])
                        m = [np.mean(fits[:,i]) for i in range(5)]
                        s = [np.std(fits[:,i]) for i in range(5)]
                        means.append(m)
                        sds.append(s)


                slit_center_offset = pos[1] - ystart
                fc = ff(slit_center_offset)
                slit_center_pos = np.float(extent[0] + fc )

                if drop_this: 
                        poss.append(NaN)
                        poss_y.append(NaN)
                        poss_mm.append(NaN)
                else: 
                        poss.append(slit_center_pos)
                        poss_y.append(ystart)
                        poss_mm.append(CSU.csu_pix_to_mm_poly(slit_center_pos, ystart)[0])

                delta = np.float(slit_center_pos - pos[0])
                if drop_this: 
                        deltas.append(NaN)
                        deltas_mm.append(NaN)
                else: 
                        deltas.append(delta)
                        b = CSU.csu_pix_to_mm_poly(slit_center_pos + delta, ystart)[0]
                        deltas_mm.append(b - poss_mm[-1])

                q = np.float(np.degrees(np.tan(ff(1)-ff(0))))
                if drop_this: qs.append(NaN)
                qs.append(q)


        means = np.array(means)
        f = lambda x: np.array(x).ravel()
        sds = f(sds)
        deltas = f(deltas)
        poss = f(poss)
        poss_y = f(poss_y)
#.........這裏部分代碼省略.........
開發者ID:Keck-DataReductionPipelines,項目名稱:MosfireDRP,代碼行數:103,代碼來源:check_CSU_pos.py

示例11: go

# 需要導入模塊: from MOSFIRE import IO [as 別名]
# 或者: from MOSFIRE.IO import readfits [as 別名]
def go(fname):
        global plot_arr

        print fname
        
        (header, data) = IO.readfits(fname)
        bs = CSU.Barset()
        bs.set_header(header)

        cntfit = 1
        for i in range(1,8):
                continue
                pl.figure(i)
                pl.clf()

        first_time = True

        bars = []
        means = []
        sds = []
        deltas = []
        deltas_mm = []
        poss = []
        poss_mm = []
        poss_y = []
        request = []
        qs = []
        bars = range(1, 93)
        for bar in bars:
                pos = bs.get_bar_pix(bar)
                if bar % 8 == 0:
                        print "%2.0i: (%7.2f, %7.2f)" % (bar, pos[0], pos[1])

                width = 19 
                [[xslice, yslice],extent,ystart] = make_slice(pos,0,width,30)


                if not is_in_bounds(extent):
                        fits = [0,0,0,0,0]
                        [ff,ok] = [np.poly1d(0,0), []]
                        means.append(fits)
                        sds.append(fits)
                        drop_this = True
                else:
                        drop_this = False
                        fits = []
                        ys = np.arange(-10,10, dtype=np.float32)
                        for i in ys:
                                tofit = data[ystart-i, xslice]
                                y = median_tails(tofit)

                                ps = Fit.do_fit(y, Fit.residual_single)
                                fits.append(ps[0])
                        
                        fits = np.array(fits)
                        fits[:,1] += 1

                        # fit to the ridgeline
                        [ff, ok] = fit_line_with_sigclip(ys, fits[:,1])
                        m = [np.mean(fits[:,i]) for i in range(5)]
                        s = [np.std(fits[:,i]) for i in range(5)]
                        means.append(m)
                        sds.append(s)

                        #if bar == 44: start_shell()
                        #if bar == 43: start_shell()

                        # End of measurement logic, PLOTS

                        plot_arr = [12, 8, cntfit]
                        cntfit += 1
                        if False:
                                plot_stamps(data[yslice, xslice], ps[0])
                                y0 = median_tails(data[ystart, xslice])
                                plot_linefits(y0, ff)
                                plot_ridgeline(fits, ok, ys, ff, bar)
                                plot_widths(fits, ok, ys)

                        # End of plots, BOOKEEPING


                slit_center_offset = pos[1] - ystart
                fc = ff(slit_center_offset)
                slit_center_pos = np.float(extent[0] + fc )

                if drop_this: 
                        poss.append(NaN)
                        poss_y.append(NaN)
                        poss_mm.append(NaN)
                else: 
                        poss.append(slit_center_pos)
                        poss_y.append(ystart)
                        poss_mm.append(CSU.csu_pix_to_mm_poly(slit_center_pos, ystart)[0])

                delta = np.float(slit_center_pos - pos[0])
                if drop_this: 
                        deltas.append(NaN)
                        deltas_mm.append(NaN)
                else: 
                        deltas.append(delta)
#.........這裏部分代碼省略.........
開發者ID:Keck-DataReductionPipelines,項目名稱:MosfireDRP_preWMKO,代碼行數:103,代碼來源:CSU_Check.py

示例12: go

# 需要導入模塊: from MOSFIRE import IO [as 別名]
# 或者: from MOSFIRE.IO import readfits [as 別名]
def go(maskname,
        band,
        filenames,
        wavefile,
        wavoptions,
        longoptions,
        use_flat=False):

    '''
    The go command is the main entry point into this module.

    Inputs:
        maskname: String of the mask name
        band: String of 'Y', 'J', 'H', or 'K'
        filenames: List of filenames to reduce
        wavefile: String of path to FITS file with the wavelength solution
        wavoptions: The Wavelength Options dictionary
        longoptions: Dictionary containing:
            {'yrange': The pixel range to extract over
            'row_position': The row to solve the initial wavelength solution on}
        use_flat: Boolean False [default] means to use no flat field
            Boolean True means to divide by the pixelflat
    '''
    wavename = Wavelength.filelist_to_wavename(filenames, band, maskname,
            wavoptions).rstrip(".fits")

    print "Wavefile: {0}".format(wavefile)
    lamhdr, lamdat = IO.readfits(wavefile)

    positions = []
    objname = None
    for listfile in filenames:
        fnames = IO.list_file_to_strings(listfile)
        if len(fnames) != 1:
            raise Exception("I currently expect only one file per position. Remove multiple entries and try again")

        header, data, bs = IO.readmosfits(fnames[0], wavoptions)

        if objname is None:
            objname = header["object"]

        if objname != header["object"]:
            print ("Trying to combine longslit stack of object {0} " 
                    "with object {1}".format(objname, header["object"]))

        print("{0:18s} {1:30s} {2:2s} {3:4.1f}".format(file, header["object"],
            header["frameid"], header["yoffset"]))

        positions.append([fnames[0], header, data, bs])

    print("{0:2g} nod positions found. Producing stacked difference" \
           " image.".format(len(positions)))

    for i in xrange(len(positions)-1):
        A = positions[i]
        B = positions[i+1]

        print("----------- -----".format(A,B))
        
        dname, varname = imdiff(A, B, maskname, band, header, wavoptions)
        if use_flat:
            apply_flat(dname, maskname, band)
            apply_flat(varname, maskname, band)

        rectify(dname, lamdat, A, B, maskname, band, wavoptions,
                longoptions)
        rectify(varname, lamdat, A, B, maskname, band, wavoptions,
                longoptions)
        print dname

    dname, vname = imdiff(B, A, maskname, band, header, wavoptions)
    if use_flat:
        apply_flat(dname, maskname, band)
        apply_flat(vname, maskname, band)
    rectify(dname, lamdat, B, A, maskname, band, wavoptions,
            longoptions)
    rectify(vname, lamdat, B, A, maskname, band, wavoptions,
            longoptions)
    
    if False:
        fname = os.path.join(path, wavename + ".fits")
        B = IO.readfits(fname)
        B = [fname, B[0], B[1]]
        for i in xrange(len(positions)):
            A = positions[i]
            imdiff(A, B, maskname, band, wavoptions)
            rectify(path, dname, lamdat, A, B, maskname, band, wavoptions,
                longoptions)
        imdiff(B, A, maskname, band, wavoptions)
        rectify(path, dname, lamdat, B, A, maskname, band, wavoptions,
                longoptions)
開發者ID:Keck-DataReductionPipelines,項目名稱:MosfireDRP_preWMKO,代碼行數:93,代碼來源:Longslit.py

示例13: slice

# 需要導入模塊: from MOSFIRE import IO [as 別名]
# 或者: from MOSFIRE.IO import readfits [as 別名]
        if x0 < 0: x0 = 0
        x1 = pos[0] + w
        if x1 > 2047: x1 = 2047
        if x0 > x1: x0 = x1
        xs = slice(x0, x1)

        y0 = pos[1]-h
        if y0 < 0: y0 = 0
        y1 = pos[1]+h
        if y1 > 2047: y1 = 2047
        if y0 > y1: y0 = y1
        ys = slice(y0,y1)

        return [[xs,ys],[x0,x1,y0,y1]]

(header, data) = IO.readfits("/users/npk/desktop/c8/m101029_0233.ref.fits")
(header2, data2) = IO.readfits("/users/npk/desktop/c8/m101029_0425.ref.fits")
(header3, data3) = IO.readfits("/users/npk/desktop/c8/m101029_0427.ref.fits")

data = data3


deg = np.pi/180.
np.set_printoptions(precision=3)
np.set_printoptions(suppress=True)

reload(CSU)
reload(IO)
reload(Fit)
reload(Detector)
開發者ID:Keck-DataReductionPipelines,項目名稱:MosfireDRP_preWMKO,代碼行數:32,代碼來源:CSU_Check.py

示例14:

# 需要導入模塊: from MOSFIRE import IO [as 別名]
# 或者: from MOSFIRE.IO import readfits [as 別名]
import scipy.ndimage
import matplotlib

import pyfits as pf

import MOSFIRE.Options as options
from MOSFIRE import IO, Fit, Wavelength

pl.ion()

path = "/users/npk/desktop/c9_reduce/npk_calib3_q1700_pa_0/"
path = "/scr2/mosfire/c9_npk/npk_calib3_q1700_pa_0/"
path = "/scr2/mosfire/firstlight/NGC5053"

mdat = IO.readmosfits(path + "m120406_0291.fits")
fdat = IO.readfits(path + "pixelflat_2d_J.fits")
ldat = IO.readfits(path + "lambda_solution_m120406_0291.fits")

gain = 2.15

dat = mdat[1]/fdat[1] * gain
dat = mdat[1] * gain
lam = ldat[1]

dat[np.logical_not(np.isfinite(dat))] = 0.


yroi=slice(86, 160)
yroi=slice(173, 203)
yroi=slice(1015, 1090)
xroi=slice(0,2048)
開發者ID:Keck-DataReductionPipelines,項目名稱:MosfireDRP_preWMKO,代碼行數:33,代碼來源:drp10f.py


注:本文中的MOSFIRE.IO.readfits方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。