本文整理匯總了Python中MDAnalysis.Universe.selectAtoms方法的典型用法代碼示例。如果您正苦於以下問題:Python Universe.selectAtoms方法的具體用法?Python Universe.selectAtoms怎麽用?Python Universe.selectAtoms使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類MDAnalysis.Universe
的用法示例。
在下文中一共展示了Universe.selectAtoms方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: count_interactions
# 需要導入模塊: from MDAnalysis import Universe [as 別名]
# 或者: from MDAnalysis.Universe import selectAtoms [as 別名]
def count_interactions(grof, xtcf, btime, cutoff, debug):
u = Universe(grof, xtcf)
un_query = ('(resname PRO and (name CB or name CG or name CD)) or'
'(resname VAL and (name CG1 or name CG2)) or'
'(resname GLY and name CA) or'
'(resname ALA and name CB)')
vp_query = ('name OW')
# MDAnalysis will convert the unit of length to angstrom, though in Gromacs the unit is nm
un_atoms = u.selectAtoms(un_query)
for ts in u.trajectory:
if ts.time >= btime:
numcount = 0
tropo_vp_atoms = u.selectAtoms(
'({0}) and around 8 ({1})'.format(vp_query, un_query))
# different from when calculating unun, there is no overlap atom
# between un_atoms & tropo_vp_atoms
for ai in un_atoms:
for aj in tropo_vp_atoms:
d = np.linalg.norm(ai.pos - aj.pos)
if d <= cutoff:
numcount += 1
yield '{0:10.0f}{1:8d}\n'.format(ts.time, numcount)
# per 100 frames, num of frames changes with the size of xtc file, for debugging
if debug and ts.frame % 2 == 0:
print "time: {0:10.0f}; step: {1:10d}; frame: {2:10d}".format(ts.time, ts.step, ts.frame)
示例2: test_write_selection
# 需要導入模塊: from MDAnalysis import Universe [as 別名]
# 或者: from MDAnalysis.Universe import selectAtoms [as 別名]
def test_write_selection(self):
ref = Universe(mol2_molecule)
gr0 = ref.selectAtoms("name C*")
gr0.write(self.outfile)
u = Universe(self.outfile)
gr1 = u.selectAtoms("name C*")
assert_equal(len(gr0), len(gr1))
示例3: calc_rama
# 需要導入模塊: from MDAnalysis import Universe [as 別名]
# 或者: from MDAnalysis.Universe import selectAtoms [as 別名]
def calc_rama(grof, xtcf, btime, etime):
u = Universe(grof, xtcf)
resname_query = 'resname GLY or resname VAL or resname PRO'
atoms = u.selectAtoms(resname_query)
resname = atoms.resnames()[0] # [0] because .resnames() returns a list of one element
resid = atoms.resids()[0] # [0] because .resnames() returns a list of one element
phi_query = ('(resname ACE and name C) or '
'(resname GLY or resname VAL or resname PRO and '
'(name N or name CA or name C))')
psi_query = ('(resname GLY or resname VAL or resname PRO and (name N or name CA or name C or name NT)) or '
'(resname NH2 and name N)')
# MDAnalysis will convert the unit of length to angstrom, though in Gromacs the unit is nm
phi = u.selectAtoms(phi_query)
psi = u.selectAtoms(psi_query)
for _ in phi.atoms:
print _
for _ in psi.atoms:
print _
for ts in u.trajectory:
if btime > ts.time:
continue
if etime > 0 and etime < ts.time:
break
yield '{0:.3f} {1:.3f} {2}-{3}\n'.format(
phi.dihedral(), psi.dihedral(), resname, resid)
U.print_progress(ts)
示例4: count_interactions
# 需要導入模塊: from MDAnalysis import Universe [as 別名]
# 或者: from MDAnalysis.Universe import selectAtoms [as 別名]
def count_interactions(A):
logger.debug('loading {0}'.format(A.grof))
univ = Universe(A.grof)
logger.debug('loaded {0}'.format(A.grof))
pro_atoms = univ.selectAtoms('protein and not resname ACE and not resname NH2')
pl = pro_atoms.residues.numberOfResidues()
# +1: for missing resname ACE, such that it's easier to proceed in the next
# step
logger.debug('loading {0}, {1}'.format(A.grof, A.xtcf))
u = Universe(A.grof, A.xtcf)
logger.debug('loaded {0}, {1}'.format(A.grof, A.xtcf))
# Just for reference to the content of query when then code was first
# written and used
# query = ('(resname PRO and (name CB or name CG or name CD)) or'
# '(resname VAL and (name CG1 or name CG2)) or'
# '(resname GLY and name CA) or'
# '(resname ALA and name CB)')
query = A.query
atoms = u.selectAtoms(query)
logger.info('Number of atoms selected: {0}'.format(atoms.numberOfAtoms()))
# MDAnalysis will convert the unit of length to angstrom, though in Gromacs
# the unit is nm
cutoff = A.cutoff * 10
nres_away = A.nres_away
btime = A.btime
etime = A.etime
nframe = 0
unun_map = None
for ts in u.trajectory:
if btime > ts.time:
continue
if etime > 0 and etime < ts.time:
break
nframe += 1
map_ = np.zeros((pl+1, pl+1)) # map for a single frame
for i, ai in enumerate(atoms):
ai_resid = ai.resid
for j, aj in enumerate(atoms):
aj_resid = aj.resid
# to avoid counting the same pair twices,
# the 2 resid cannot be neigbors
if i < j and aj_resid - ai_resid >= nres_away:
d = np.linalg.norm(ai.pos - aj.pos)
if d <= cutoff:
# -1: resid in MDAnalysis starts from 1
map_[ai_resid-1][aj_resid-1] += 1
if unun_map is None:
unun_map = map_
else:
unun_map = unun_map + map_
utils.print_progress(ts)
sys.stdout.write("\n")
return unun_map / float(nframe)
示例5: gen_hbond_map
# 需要導入模塊: from MDAnalysis import Universe [as 別名]
# 或者: from MDAnalysis.Universe import selectAtoms [as 別名]
def gen_hbond_map(xpm, ndx, grof):
xpm = objs.XPM(xpm)
hbndx = objs.HBNdx(ndx)
univ = Universe(grof)
pro_atoms = univ.selectAtoms('protein and not resname ACE and not resname NH2')
hbonds_by_resid = hbndx.map_id2resid(pro_atoms)
# pl: peptide length
pl = pro_atoms.residues.numberOfResidues()
hblist = []
for i, j in zip(hbonds_by_resid, xpm.color_count):
# j[1] is the probability of hbonds, while j[0] = 1 - j[1]
# format: [resid of donor, resid of acceptor]
# -1 is because resid in MDAnalysis starts from 1, minus so as to fit
# -into hb_map initialized by hb_map
hblist.append([i[0]-1, i[1]-1, j[1]])
# +1: for missing resname ACE, such that it's easier to proceed in the next
# step
pl1 = pl + 1
hb_map = np.zeros((pl1, pl1))
for _ in hblist:
hb_map[_[0]][_[1]] = _[2]
return hb_map
示例6: main
# 需要導入模塊: from MDAnalysis import Universe [as 別名]
# 或者: from MDAnalysis.Universe import selectAtoms [as 別名]
def main():
arg_parser = argparse.ArgumentParser(description='通過給定殘基名稱,殘基內原子數目,兩個原子在殘基內的索引(從0開始),計算所有殘基內這兩個原子之間的直線距離。')
arg_parser.add_argument('resname', action='store', help='殘基名稱')
arg_parser.add_argument('atoms_num', type=int, action='store', help='殘基內原子數目')
arg_parser.add_argument('index1', type=int, action='store', help='第一個原子的索引,索引從0開始')
arg_parser.add_argument('index2', type=int, action='store', help='第二個原子的索引,索引從0開始')
arg_parser.add_argument('topology_file', action='store', help='拓撲文件,例如gro, pdb')
args = arg_parser.parse_args()
resname, atoms_num, index1, index2 = args.resname, args.atoms_num, args.index1, args.index2
universe = Universe(args.topology_file)
atom_groups = universe.selectAtoms("resname " + resname)
if len(atom_groups) % atoms_num != 0:
print("拓撲文件內對應殘基原子總數不是所給原子數目的整數倍,請給予正確的原子數目。")
exit(1)
atoms1 = []
atoms2 = []
for i in range(0, len(atom_groups), atoms_num):
atoms1.append(atom_groups[i:i + atoms_num][index1])
atoms2.append(atom_groups[i:i + atoms_num][index2])
dists = dist(AtomGroup(atoms1), AtomGroup(atoms2))
print("The distance between atoms %s and %s is:" % (index1, index2))
for i in dists[2]:
print(i)
print("The average distance between atoms %s and %s is:" % (index1, index2))
print(np.average(dists[2]))
示例7: count_interactions
# 需要導入模塊: from MDAnalysis import Universe [as 別名]
# 或者: from MDAnalysis.Universe import selectAtoms [as 別名]
def count_interactions(grof, xtcf, btime, etime, cutoff):
cutoff = cutoff * 10 # * 10: convert from nm to angstrom to work with MDAnalysis
u = Universe(grof, xtcf)
query = ('(resname PRO and (name CB or name CG or name CD)) or'
'(resname VAL and (name CG1 or name CG2)) or'
'(resname GLY and name CA) or'
'(resname ALA and name CB)')
# MDAnalysis will convert the unit of length to angstrom, though in Gromacs the unit is nm
atoms = u.selectAtoms(query)
for ts in u.trajectory:
if btime > ts.time:
continue
if etime > 0 and etime < ts.time:
break
numcount = 0
for i, ai in enumerate(atoms):
for j, aj in enumerate(atoms):
# to avoid counting the same pair twices,
# the 2 resid cannot be neigbors
if i < j and abs(ai.resid - aj.resid) >= 2:
d = np.linalg.norm(ai.pos - aj.pos)
if d <= cutoff:
numcount += 1
yield '{0:10.0f}{1:8d}\n'.format(ts.time, numcount)
utils.print_progress(ts)
示例8: main
# 需要導入模塊: from MDAnalysis import Universe [as 別名]
# 或者: from MDAnalysis.Universe import selectAtoms [as 別名]
def main(struct):
u = Universe(struct)
phi = u.selectAtoms(PHI_SEL)
psi = u.selectAtoms(PSI_SEL)
print u.filename
print 'phi: {0:8.2f}'.format(phi.dihedral())
print 'psi: {0:8.2f}'.format(psi.dihedral())
print
示例9: calc_rg
# 需要導入模塊: from MDAnalysis import Universe [as 別名]
# 或者: from MDAnalysis.Universe import selectAtoms [as 別名]
def calc_rg(grof, xtcf, btime, debug):
u = Universe(grof, xtcf)
query = 'name CA'
# MDAnalysis will convert the unit of length to angstrom, though in Gromacs the unit is nm
atoms = u.selectAtoms(query)
natoms = atoms.numberOfAtoms()
for ts in u.trajectory:
if ts.time >= btime:
com = atoms.centerOfMass() # center of mass
_sum = sum((sum(i**2 for i in (a.pos - com)) for a in atoms))
rg = np.sqrt(_sum / natoms)
yield '{0:10.0f}{1:15.6f}\n'.format(ts.time, rg)
# per 100 frames, num of frames changes with the size of xtc file, for debugging
if debug and ts.frame % 2 == 0:
print "time: {0:10.0f}; step: {1:10d}; frame: {2:10d}".format(ts.time, ts.step, ts.frame)
示例10: sequence_spacing
# 需要導入模塊: from MDAnalysis import Universe [as 別名]
# 或者: from MDAnalysis.Universe import selectAtoms [as 別名]
def sequence_spacing(grof, xtcf, btime, etime, peptide_length, atom_sel):
u = Universe(grof, xtcf)
# this selection part should be better customized
# here, only have been backbone atoms are used, u.selectAtoms doesn't
# include Hydrogen atoms
# REMMEMBER: ARGS verification should be done in main ONLY!
# range works like this:
# in MDAnalysis, resid starts from 1, in sequence_spacing.py, we don't count
# the C- and N- termini, so it's from 2 to peptide_len+2
residues = [u.selectAtoms(atom_sel.format(i)) for i in range(2, peptide_length + 2)]
ijdist_dict = {}
for ts in u.trajectory:
# btime, etime defaults to 0, if etime is 0, loop till the end of the
# trajectory
if btime > ts.time:
continue
if etime > 0 and etime < ts.time:
break
# the good stuff
for i, resi in enumerate(residues):
for j, resj in enumerate(residues):
# to remove duplicate since resi & resj are within the same peptide
if i < j:
dij = abs(i - j)
d_atomi_atomj = []
# loop through every atom in both residues
for atomi in resi:
for atomj in resj:
d_atomi_atomj.append(
np.linalg.norm(atomi.pos - atomj.pos))
# add the result to the dictionary
ij_dist = np.average(d_atomi_atomj) # distance between i and j
if dij not in ijdist_dict.keys():
ijdist_dict[dij] = [ij_dist]
else:
ijdist_dict[dij].append(ij_dist)
utils.print_progress(ts)
return ijdist_dict
示例11: getWaterCoorWithH
# 需要導入模塊: from MDAnalysis import Universe [as 別名]
# 或者: from MDAnalysis.Universe import selectAtoms [as 別名]
def getWaterCoorWithH(self,centre,psf,dcd,outputFile):
rho=Universe(psf,dcd)
H2OCoordinate=[]
no=0
title='resname'+' '+'atomid'+' '+'resnumber'+' X Y Z '+' '+'segname'+' '+'frameNo'+' '+'centreNo'+'\n'
outputFile.write(title)
for oxygenInforSet in self:
H2OCoordinateSet=[]
print 'There were',len(oxygenInforSet),'waters in the'
for oxygenInfor in oxygenInforSet:
## no1+=1
## print no1
frameNo=oxygenInfor[-2]
frameNo=int(frameNo)-1
segName=oxygenInfor[-3]
resNumber=oxygenInfor[2]
frame=rho.trajectory[frameNo]
infor='segid '+segName+' and resid '+resNumber
selected=rho.selectAtoms(infor)
atomID=[]
for atoms in selected.atoms:
ID=str(atoms).split()[2][:-1]
atomID.append(ID)
selectedResId=selected.resids()
selectedResNa=selected.resnames()
coordsOH1H2=selected.coordinates()
for i in range(3):
atomInfor=str(selectedResNa[0])+' '+str(atomID[i])+' '+str(resNumber)+' '+str(coordsOH1H2[i])[1:-1]+' '+segName+' '+str(frameNo)+' '+str(no)+'\n'
outputFile.write(atomInfor)
H2OCoordinateSet.append(coordsOH1H2)
no+=1
H2OCoordinate.append(H2OCoordinateSet)
print no,'is finished'
outputFile.close()
return H2OCoordinate
示例12: count_interactions
# 需要導入模塊: from MDAnalysis import Universe [as 別名]
# 或者: from MDAnalysis.Universe import selectAtoms [as 別名]
def count_interactions(grof, xtcf, btime, cutoff, debug):
u = Universe(grof, xtcf)
query = ('(resname PRO and (name CB or name CG or name CD)) or'
'(resname VAL and (name CG1 or name CG2)) or'
'(resname GLY and name CA) or'
'(resname ALA and name CB)')
# MDAnalysis will convert the unit of length to angstrom, though in Gromacs the unit is nm
atoms = u.selectAtoms(query)
for ts in u.trajectory:
if ts.time >= btime:
numcount = 0
for i, ai in enumerate(atoms):
for j, aj in enumerate(atoms):
# to avoid counting the same pair twices,
# the 2 resid cannot be neigbors
if i < j and abs(ai.resid - aj.resid) >= 2:
d = np.linalg.norm(ai.pos - aj.pos)
if d <= cutoff:
numcount += 1
yield '{0:10.0f}{1:8d}\n'.format(ts.time, numcount)
# per 100 frames, num of frames changes with the size of xtc file, for debugging
if debug and ts.frame % 2 == 0:
print "time: {0:10.0f}; step: {1:10d}; frame: {2:10d}".format(ts.time, ts.step, ts.frame)
示例13: sequence_spacing
# 需要導入模塊: from MDAnalysis import Universe [as 別名]
# 或者: from MDAnalysis.Universe import selectAtoms [as 別名]
def sequence_spacing(pf, grof, xtcf, peptide_length, atom_sel, output=None):
u = Universe(grof, xtcf)
# this selection part should be better customized
# here, only have been backbone atoms are used, u.selectAtoms doesn't
# include Hydrogen atoms
# REMMEMBER: OPTIONS verification should be done in main ONLY!
residues = [u.selectAtoms(atom_sel.format(i)) for i in range(2, peptide_length)]
ijdist_dict = {}
for ts in u.trajectory:
for i, resi in enumerate(residues):
for j, resj in enumerate(residues):
if i < j:
resi_pos = resi.centerOfGeometry() # residue i position
resj_pos = resj.centerOfGeometry() # residue j position
ijdist = np.linalg.norm(resi_pos - resj_pos)
dij = j - i # distance between i and j
if dij not in ijdist_dict.keys():
ijdist_dict[dij] = [dij]
else:
ijdist_dict[dij].append(ijdist)
if ts.step % 2000000 == 0: # 2000ps
print "time step: {0:d}".format(ts.step)
return ijdist_dict
示例14: main
# 需要導入模塊: from MDAnalysis import Universe [as 別名]
# 或者: from MDAnalysis.Universe import selectAtoms [as 別名]
def main():
arg_parser = argparse.ArgumentParser(description='通過給定殘基名稱,殘基內原子數目,原子在殘基內的索引(從0開始),計算原子的坐標。')
arg_parser.add_argument('resname', action='store', help='殘基名稱')
arg_parser.add_argument('atoms_num', type=int, action='store', help='殘基內原子數目')
arg_parser.add_argument('index', type=int, action='store', help='原子的索引,索引從0開始')
arg_parser.add_argument('topology_file', action='store', help='拓撲文件,例如gro, pdb')
args = arg_parser.parse_args()
resname, atoms_num, index = args.resname, args.atoms_num, args.index
universe = Universe(args.topology_file)
atom_groups = universe.selectAtoms("resname " + resname)
if len(atom_groups) % atoms_num != 0:
print("拓撲文件內對應殘基原子總數不是所給原子數目的整數倍,請給予正確的原子數目。")
exit(1)
positions = []
for i in range(0, len(atom_groups), atoms_num):
positions.append(atom_groups[i:i + atoms_num][index].position)
print("The positions of atoms %s is:" % (index))
for i in positions:
print(i)
示例15: str
# 需要導入模塊: from MDAnalysis import Universe [as 別名]
# 或者: from MDAnalysis.Universe import selectAtoms [as 別名]
import sys
sys.path.append('/home/x/xiansu/pfs/program/numpy/lib/python2.6/site-packages')
from MDAnalysis import Universe, Writer
from MDAnalysis.analysis.distances import distance_array
import MDAnalysis
import numpy
from Numeric import *
top='npt.gro'
traj='md_extract1.trr'
water=Universe(top,traj)
o=water.selectAtoms('name O*')
resid=o.resids()
print resid
#resnu=o.resnums()
#resna=o.resnames()
atomInf=[]
for i in o.atoms:
atomid= str(i).split()[2]
atomseg=str(i).split()[-1]
atomidandseg=[]
atomidandseg.append(atomid)
atomidandseg.append(atomseg)
atomInf.append(atomidandseg)