當前位置: 首頁>>代碼示例>>Python>>正文


Python CGAT.Stats類代碼示例

本文整理匯總了Python中CGAT.Stats的典型用法代碼示例。如果您正苦於以下問題:Python Stats類的具體用法?Python Stats怎麽用?Python Stats使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了Stats類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testLRT

    def testLRT(self):
        """test that the false positive rate is in the same order as mSignificance.

        Sample from a normal distribution and compare two models:

        1. mean estimated = complex model (1 df)
        2. mean given     = simple model  (0 df)

        Likelihood = P(model | data)
        """
        simple_np = 0
        complex_np = 1

        npassed = 0

        for replicate in range(0, self.mNumReplicates):
            sample = scipy.stats.norm.rvs(
                size=self.mNumSamples, loc=0.0, scale=1.0)
            mean = scipy.mean(sample)

            complex_ll = numpy.sum(
                numpy.log(scipy.stats.norm.pdf(sample, loc=mean, scale=1.0)))
            simple_ll = numpy.sum(
                numpy.log(scipy.stats.norm.pdf(sample, loc=0.0, scale=1.0)))

            a = Stats.doLogLikelihoodTest(complex_ll, complex_np,
                                          simple_ll, simple_np,
                                          significance_threshold=self.mSignificance)

            if a.mPassed:
                npassed += 1

        r = float(npassed) / self.mNumReplicates

        self.assertAlmostEqual(self.mSignificance, r, places=self.nplaces)
開發者ID:lesheng,項目名稱:cgat,代碼行數:35,代碼來源:Stats_test.py

示例2: checkFDR

    def checkFDR(self, pi0_method):

        result = Stats.doFDR(
            self.mPvalues, fdr_level=0.05, pi0_method=pi0_method)
        R("""require ('qvalue')""")
        qvalues = R.qvalue(ro.FloatVector(self.mPvalues),
                           fdr_level=0.05,
                           pi0_method=pi0_method)

        assert qvalues.names[1] == "pi0"
        assert qvalues.names[2] == "qvalues"
        assert qvalues.names[5] == "significant"
        assert qvalues.names[6] == "lambda"

        r_qvalues = qvalues[2]
        r_pi0 = qvalues[1][0]

        self.assertEqual(len(result.mQValues), len(qvalues[2]))
        self.assertEqual(len(result.mLambda), len(qvalues[6]))
        self.assertEqual(result.mPi0, r_pi0)
        for a, b in zip(result.mQValues, r_qvalues):
            self.assertAlmostEqual(a, b, 2, "unequal: %f != %f" % (a, b))

        for a, b in zip(result.mPassed, qvalues[5]):
            self.assertEqual(
                a, b, "threshold-passed flag not equal: %s != %s" % (a, b))
開發者ID:lesheng,項目名稱:cgat,代碼行數:26,代碼來源:Stats_test.py

示例3: doOldFDR

def doOldFDR(options, args):
    """apply fdr to output of annotator."""

    # read input
    annotators = []
    for filename in args:
        infile = open(filename, "r")
        annotators.append(readAnnotator(infile))
        infile.close()

    # apply filters and create diagnostic plots
    for filename, data in zip(args, annotators):
        ninput = len(data)
        pvalues = [x.mPValue for x in data]
        vlambda = numpy.arange(0, max(pvalues), 0.05)
        try:
            qvalues = Stats.doFDR(
                pvalues, vlambda=vlambda, fdr_level=options.fdr)
        except ValueError, msg:
            E.warn("%s: fdr could not be computed - no filtering: %s" %
                   (filename, msg))
            continue

        qvalues.plot(filename + "_diagnostics.png")

        data = [x[0] for x in zip(data, qvalues.mPassed) if x[1]]
開發者ID:lesheng,項目名稱:cgat,代碼行數:26,代碼來源:annotator2tsv.py

示例4: __call__

    def __call__(self, track, slice=None):

        result = odict()

        merged = None
        rocs = []

        for field in self.mFields:
            data = []
            for replicate in EXPERIMENTS.getTracks(track):
                statement = "SELECT contig, start, end,%(field)s FROM %(replicate)s_intervals" % locals()
                data.append(self.get(statement))

            idx = []
            for x in range(len(data)):
                i = IndexedGenome.IndexedGenome()
                for contig, start, end, peakval in data[x]:
                    i.add(contig, start, end, peakval)
                idx.append(i)

            def _iter(all):
                all.sort()
                last_contig, first_start, last_end, last_value = all[0]
                for contig, start, end, value in all[1:]:
                    if contig != last_contig or last_end < start:
                        yield (last_contig, first_start, last_end)
                        last_contig, first_start, last_end = contig, start, end
                    else:
                        last_end = max(last_end, end)
                yield (last_contig, first_start, last_end)

            if not merged:
                all = [x for x in itertools.chain(*data)]
                merged = list(_iter(all))

            roc_data = []
            for contig, start, end in merged:
                intervals = []
                for i in idx:
                    try:
                        intervals.append(list(i.get(contig, start, end)))
                    except KeyError:
                        continue

                if len(intervals) == 0:
                    continue

                is_repro = len([x for x in intervals if x != []]) == len(data)
                value = max([x[2] for x in itertools.chain(*intervals)])

                # fpr, tpr
                roc_data.append((value, is_repro))

            roc_data.sort()
            roc_data.reverse()

            roc = zip(*Stats.computeROC(roc_data))
            result[field] = odict((("FPR", roc[0]), (field, roc[1])))

        return result
開發者ID:nishantthakur,項目名稱:cgat,代碼行數:60,代碼來源:Overlaps.py

示例5: computeFDR

def computeFDR(all_results,
               qvalue_method="storey"):
    '''compute FDR.

    update GOResult structure with field .fdr
    '''

    # flatten all_results
    results = []
    for key, data in all_results.iteritems():
        results.extend(data.mResults.values())

    observed_min_pvalues = [min(
        x.mProbabilityOverRepresentation,
        x.mProbabilityUnderRepresentation) for x in results]

    if qvalue_method == "storey":

        # compute fdr via Storey's method
        fdr_data = Stats.doFDR(observed_min_pvalues, vlambda=0.1)

        E.info("estimated proportion of true null hypotheses = %6.4f" %
               fdr_data.mPi0)

        if fdr_data.mPi0 < 0.1:
            E.warn(
                "estimated proportion of true null hypotheses is "
                "less than 10%%  (%6.4f)" % fdr_data.mPi0)

        for result, qvalue in zip(results, fdr_data.mQValues):
            result.fdr = qvalue

    elif options.qvalue_method == "empirical":
        assert options.sample > 0, "requiring a sample size of > 0"
        raise NotImplementedError("empirical needs some work")
開發者ID:Charlie-George,項目名稱:cgat,代碼行數:35,代碼來源:genelist_analysis.py

示例6: check

 def check(self, method):
     '''check for length equality and elementwise equality.'''
     a = R['p.adjust'](self.pvalues, method=method)
     b = Stats.adjustPValues(self.pvalues, method=method)
     self.assertEqual(len(a), len(b))
     for x, y in zip(a, b):
         self.assertAlmostEqual(x, y)
開發者ID:lesheng,項目名稱:cgat,代碼行數:7,代碼來源:Stats_test.py

示例7: testAgainstQValue

    def testAgainstQValue(self):

        R.assign("pvalues", self.pvalues)
        qvalue = R('''qvalue( pvalues )''')
        r_qvalues = qvalue[2]
        r_pi0 = qvalue[1][0]

        new = Stats.doFDRPython(self.pvalues)
        self.assertTrue(getRelativeError(r_pi0, new.mPi0) < self.max_error)

        for a, b in zip(r_qvalues, new.mQValues):
            self.assertAlmostEqual(a, b, places=self.nplaces)
開發者ID:lesheng,項目名稱:cgat,代碼行數:12,代碼來源:Stats_test.py

示例8: main


#.........這裏部分代碼省略.........
                h.append("df%s" % (model))
                h.append("chi%s" % (model))
                h.append("lrt%s" % (model))

            options.stdout.write("\t".join(h))
            options.stdout.write("\tcons\tpassed\tfilename\n")

            nmethod = 0

            consistent_cols = [None for x in range(len(options.analysis))]
            passed_tests = {}
            for m in options.models:
                passed_tests[m] = 0

            for result in results:

                row_consistent = None

                if options.prefix:
                    options.stdout.write("%s" % (options.prefix))

                options.stdout.write("%i" % nmethod)
                options.stdout.write("\t%i" % (result.mNumSequences))

                npassed = 0

                for model in options.models:

                    sites = result.mSites[model]

                    # do significance test
                    full_model, null_model = model, map_nested_models[model]

                    lrt = Stats.doLogLikelihoodTest(
                        result.mSites[full_model].mLogLikelihood,
                        result.mSites[full_model].mNumParameters,
                        result.mSites[null_model].mLogLikelihood,
                        result.mSites[null_model].mNumParameters,
                        options.significance_threshold)

                    x = 0
                    for analysis in options.analysis:

                        if analysis == "neb":
                            s = set(
                                map(extract_f, filter(filter_f, sites.mNEB.mPositiveSites)))

                        elif analysis == "beb":
                            s = set(
                                map(extract_f, filter(filter_f, sites.mBEB.mPositiveSites)))

                        options.stdout.write("\t%i" % (len(s)))

                        if not lrt.mPassed:
                            s = set()

                        if row_consistent is None:
                            row_consistent = s
                        else:
                            row_consistent = row_consistent.intersection(s)

                        if consistent_cols[x] is None:
                            consistent_cols[x] = s
                        else:
                            consistent_cols[x] = consistent_cols[
                                x].intersection(s)
開發者ID:Charlie-George,項目名稱:cgat,代碼行數:67,代碼來源:codemls2tsv.py

示例9: doFDR

def doFDR(options, args):

    # read input
    annotators = []
    for filename in args:
        infile = open(filename, "r")
        annotators.append(readAnnotator(infile))
        infile.close()

    do_filter = options.fdr_qvalue is not None

    extra_headers = set()
    for data, fdr, synonyms, input_files in annotators:
        for key, value in input_files.iteritems():
            extra_headers.add(key)
    extra_headers = sorted(list(extra_headers))

    # note: id used to be file
    options.stdout.write("id\tover\tcategory\tpvalue\tfold\tobserved\texpected\tci95low\tci95high\tstddev\tfdr\tqvalue\t%s\n" %
                         "\t".join(extra_headers))

    # apply filters and create diagnostic plots
    for filename, vv in zip(args, annotators):
        data, fdr, synonyms, input_files = vv

        ninput = len(data)

        E.info("processing %s with %i data points" % (filename, ninput))
        no_fdr = False

        if options.fdr_method in ("annotator", "annotator-estimate"):
            pvalues = fdr.keys()
            pvalues.sort()
            pvalues.reverse()
            for pvalue in pvalues:
                try:
                    d = fdr[pvalue]["Significant"]
                except KeyError:
                    continue

                if d.mObserved == 0:
                    E.info("no data after fdr")
                    break

                elif d.mAverage / d.mObserved < options.fdr_qvalue:
                    E.info("filtering with P-value of %f" % pvalue)
                    if do_filter:
                        data = [x for x in data if x.mPValue < pvalue]
                    for d in data:
                        if d.mPValue < pvalue:
                            d.mFDR = 1
                            d.mQValue = options.fdr_qvalue
                    break
                else:
                    E.warn("fdr could not be computed - compute more samples (at P = %f, actual fdr=%f)" %
                           (pvalue, d.mAverage / d.mObserved))
                    no_fdr = True

        if options.fdr_method == "estimate" or (options.fdr_method == "annotator-estimate" and no_fdr):

            E.info("estimating FDR from observed P-Values")
            pvalues = [x.mPValue for x in data]
            vlambda = numpy.arange(0, max(pvalues), 0.05)
            try:
                qvalues = Stats.doFDR(
                    pvalues, vlambda=vlambda, fdr_level=options.fdr_qvalue)
            except ValueError, msg:
                E.warn("fdr could not be computed - no output: %s" % msg)
                no_fdr = True
            else:
                for d, p, q in zip(data, qvalues.mPassed, qvalues.mQValues):
                    if p:
                        d.mFDR = 1
                    d.mQValue = q

                if do_filter:
                    data = [x[0] for x in zip(data, qvalues.mPassed) if x[1]]

        if do_filter and no_fdr:
            data = []

        nremoved = ninput - len(data)

        E.info("%s: %i data points left, %i removed" %
               (filename, len(data), nremoved))

        extra_values = []
        for key in extra_headers:
            if key in input_files:
                extra_values.append(input_files[key])
            else:
                extra_values.append("")

        extra_values = "\t".join(map(str, extra_values))

        for d in data:
            if d.mFoldChange < 1:
                code = "-"
            else:
                code = "+"
#.........這裏部分代碼省略.........
開發者ID:lesheng,項目名稱:cgat,代碼行數:101,代碼來源:annotator2tsv.py

示例10: Collect


#.........這裏部分代碼省略.........
                    annotator_fdr[annotator_level][dd[0]] = d
                continue
            else:
                if line[0] == "Z":
                    continue  # skip header
                if len(line[:-1].split('\t')) != 9:
                    continue  # HACK: accounts for a bug in Annotator output

                try:
                    (z, percentchange, pvalue, observed, expected, low95,
                     up95, stddev, description) = line[:-1].split('\t')[:9]
                except ValueError:
                    raise ValueError("# parsing error in line: %s" % line[:-1])

            d = DataPoint()
            d.mAnnotation = description
            d.mPValue = float(pvalue)
            d.mFoldChange = 1.0 + float(percentchange) / 100.0
            data.append(d)
    else:

        for line in lines:
            try:
                (code, goid, scount, stotal, spercent, bcount, btotal, bpercent, ratio,
                 pover, punder, goid, category, description) = line[:-1].split("\t")[:14]
            except ValueError:
                raise ValueError("# parsing error in line: %s" % line[:-1])

            if code == "+":
                p = pover
            else:
                p = punder

            d = DataPoint()
            d.mAnnotation = description
            d.mPValue = float(p)
            d.mFoldChange = float(spercent) / float(bpercent)
            data.append(d)

    # apply filters
    for c in delims:
        for d in data:
            d.mAnnotation = d.mAnnotation.split(c)[0]
    for c in ignore:
        for d in data:
            d.mAnnotation = d.mAnnotation.replace(c, '')

    ninput = len(data)
    no_fdr = False
    # apply filters

    if ninput > 0:
        if max_qvalue is not None:
            if use_annotator_fdr:
                pvalues = list(annotator_fdr.keys())
                pvalues.sort()
                pvalues.reverse()
                for pvalue in pvalues:
                    try:
                        d = annotator_fdr[pvalue]["Significant"]
                    except KeyError:
                        continue
                    if d.mObserved == 0:
                        E.info("no data remaining after fdr filtering")
                        data = []
                        break
                    elif d.mAverage / d.mObserved < max_qvalue:
                        E.info("filtering with P-value of %f" % pvalue)
                        data = [x for x in data if x.mPValue < pvalue]
                        break
                else:
                    E.warn("fdr could not be computed - compute more "
                           "samples (at P = %f, actual fdr=%f)" %
                           (pvalue, d.mAverage / d.mObserved))
                    no_fdr = True

            if no_fdr:
                if use_annotator_fdr:
                    E.info("estimating FDR from observed P-Values")

                pvalues = [x.mPValue for x in data]
                vlambda = numpy.arange(0, max(pvalues), 0.05)
                try:
                    qvalues = Stats.doFDR(
                        pvalues, vlambda=vlambda, fdr_level=max_qvalue)
                except ValueError as msg:
                    E.warn(
                        "fdr could not be computed - no filtering: %s" % msg)
                    no_fdr = True
                else:
                    data = [x[0] for x in zip(data, qvalues.mPassed) if x[1]]
        elif max_pvalue is not None:
            data = [x for x in data if x.mPValue < max_pvalue]

    if no_fdr:
        data = []

    nremoved = ninput - len(data)

    return data, nremoved, no_fdr
開發者ID:CGATOxford,項目名稱:cgat,代碼行數:101,代碼來源:go2svg.py

示例11: set

                
                options.stdout.write("%i" % nmethod)
                options.stdout.write("\t%i" % (result.mNumSequences ))
                                         
                npassed = 0
                
                for model in options.models:

                    sites = result.mSites[model]

                    ## do significance test
                    full_model, null_model = model, map_nested_models[model]
                    
                    lrt = Stats.doLogLikelihoodTest(
                        result.mSites[full_model].mLogLikelihood, 
                        result.mSites[full_model].mNumParameters, 
                        result.mSites[null_model].mLogLikelihood, 
                        result.mSites[null_model].mNumParameters, 
                        options.significance_threshold )

                    x = 0
                    for analysis in options.analysis:
                        
                        if analysis == "neb":
                            s = set(map( extract_f, filter( filter_f, sites.mNEB.mPositiveSites)))
                            
                        elif analysis == "beb":
                            s = set(map( extract_f, filter( filter_f, sites.mBEB.mPositiveSites)))                            
                            
                        options.stdout.write("\t%i" % ( len(s) ) )

                        if not lrt.mPassed:
開發者ID:siping,項目名稱:cgat,代碼行數:31,代碼來源:codemls2tsv.py

示例12: main


#.........這裏部分代碼省略.........
        if len(options.parameters) == 0:
            raise "out of parameters - please supply probability or filename with probabilities."

        param = options.parameters[0]
        del options.parameters[0]

        if options.write_separators:
            probabilities = IOTools.ReadMap(
               IOTools.openFile(param, "r"), map_functions=(str, float))
        else:
            probability = float(param)

    for x in range(len(chunks) - 1):
        ninput += 1
        matrix, row_headers, col_headers = MatlabTools.readMatrix(
            StringIO("".join(lines[chunks[x] + 1:chunks[x + 1]])),
            format=options.input_format,
            headers=options.headers)
        nrows, ncols = matrix.shape

        if options.loglevel >= 2:
            options.stdlog.write("# read matrix: %i x %i, %i row titles, %i colum titles.\n" %
                                 (nrows, ncols, len(row_headers), len(col_headers)))

        if options.write_separators:
            options.stdout.write(lines[chunks[x]][1:-1] + "\t")

        pairs = []
        if options.iteration == "pairwise":
            pairs = []
            for row1 in range(0, len(row_headers)):
                for row2 in range(row1 + 1, len(row_headers)):
                    pairs.append((row1, row2))
        elif options.iteration == "all-vs-all":
            pairs = []
            for row1 in range(0, len(row_headers)):
                for row2 in range(0, len(row_headers)):
                    if row1 == row2:
                        continue
                    pairs.append((row1, row2))

        if options.method == "chi-squared":

            for row1, row2 in pairs:
                row_header1 = row_headers[row1]
                row_header2 = row_headers[row2]
                try:
                    result = Stats.doChiSquaredTest(
                        numpy.vstack((matrix[row1], matrix[row2])))
                except ValueError:
                    nskipped += 1
                    continue

                noutput += 1
                options.stdout.write("\t".join((
                    "%s" % row_header1,
                    "%s" % row_header2,
                    "%i" % result.mSampleSize,
                    "%i" % min(matrix.flat),
                    "%i" % max(matrix.flat),
                    options.value_format % result.mChiSquaredValue,
                    "%i" % result.mDegreesFreedom,
                    options.pvalue_format % result.mProbability,
                    "%s" % result.mSignificance,
                    options.value_format % result.mPhi)) + "\n")

        elif options.method == "pearson-chi-squared":

            if nrows != 2:
                raise ValueError("only implemented for 2xn table")

            if options.write_separators:
                id = re.match("(\S+)", lines[chunks[x]][1:-1]).groups()[0]
                probability = probabilities[id]

            for col in range(ncols):
                options.stdout.write("%s\t" % col_headers[col])
                result = Stats.doPearsonChiSquaredTest(
                    probability, sum(matrix[:, col]), matrix[0, col])
                options.stdout.write("\t".join((
                    "%i" % result.mSampleSize,
                    "%f" % probability,
                    "%i" % result.mObserved,
                    "%f" % result.mExpected,
                    options.value_format % result.mChiSquaredValue,
                    "%i" % result.mDegreesFreedom,
                    options.pvalue_format % result.mProbability,
                    "%s" % result.mSignificance,
                    options.value_format % result.mPhi)))
                if col < ncols - 1:
                    options.stdout.write("\n")
                    if options.write_separators:
                        options.stdout.write(lines[chunks[x]][1:-1] + "\t")

            options.stdout.write("\n")

    E.info("# ninput=%i, noutput=%i, nskipped=%i\n" %
           (ninput, noutput, nskipped))

    E.Stop()
開發者ID:CGATOxford,項目名稱:cgat,代碼行數:101,代碼來源:matrix2stats.py

示例13: range

                else:
                    for c in options.columns:                
                        for r in range(nrows):
                            if type(table[c][r]) == types.FloatType and \
                                   table[c][r] < boundary:
                                table[c][r] = new_value

            elif method == "fdr":
                pvalues = []
                for c in options.columns: pvalues.extend( table[c] )

                assert max(pvalues) <= 1.0, "pvalues > 1 in table"
                assert min(pvalues) >= 0, "pvalue < 0 in table"

                # convert to str to avoid test for float downstream
                qvalues = map(str, Stats.adjustPValues( pvalues, method = options.fdr_method ))

                x = 0
                for c in options.columns: 
                    table[c] = qvalues[x:x+nrows]
                    x += nrows

            elif method == "normalize-by-table":

                other_table_name = options.parameters[0]
                del options.parameters[0]
                other_fields, other_table  = CSV.ReadTable( open(other_table_name, "r"), with_header = options.has_headers, as_rows = False )

                # convert all values to float
                for c in options.columns:
                    for r in range(nrows):
開發者ID:siping,項目名稱:cgat,代碼行數:31,代碼來源:table2table.py

示例14: pairwiseGOEnrichment


#.........這裏部分代碼省略.........
            shared = x_go_categories.intersection(y_go_categories)

            c = E.Counter()

            for category in shared:
                c.shared += 1
                xx = genelist1[category]
                yy = genelist2[category]

                # discard all tests with few observations in the observed
                # counts
                if xx.mSampleCountsCategory < min_observed_counts and yy.mSampleCountsCategory < min_observed_counts:
                    c.skipped += 1
                    continue

                observed = (xx.mSampleCountsCategory, yy.mSampleCountsCategory)

                aa, bb, cc, dd = \
                    (xx.mSampleCountsCategory,
                     yy.mSampleCountsCategory,
                     xx.mSampleCountsTotal - xx.mSampleCountsCategory,
                     yy.mSampleCountsTotal - yy.mSampleCountsCategory)

                if cc == dd == 0:
                    c.skipped += 1
                    continue

                c.tested += 1

                fisher, pvalue = scipy.stats.fisher_exact(numpy.array(
                    ((aa, bb),
                     (cc, dd))))

                if pvalue < 0.05:
                    c.significant_pvalue += 1
                else:
                    c.insignificant_pvalue += 1

                results.append(PairResult._make((category,
                                                 labels[x],
                                                 labels[y],
                                                 xx.mSampleCountsCategory,
                                                 xx.mSampleCountsTotal,
                                                 xx.mPValue,
                                                 xx.mQValue,
                                                 yy.mSampleCountsCategory,
                                                 yy.mSampleCountsTotal,
                                                 yy.mPValue,
                                                 yy.mQValue,
                                                 pvalue,
                                                 1.0,
                                                 go2info[category].mDescription)))

            outfile.write("\t".join(map(str,
                                        (labels[x], labels[y],
                                         len(x_go_categories),
                                         len(y_go_categories),
                                         c.shared,
                                         c.skipped,
                                         c.tested,
                                         c.significant_pvalue,
                                         c.insignicant_pvalue))) + "\n")
    if options.output_filename_pattern:
        outfile.close()

    if options.fdr:
        pvalues = [x.pvalue for x in results]

        if options.qvalue_method == "storey":

            # compute fdr via Storey's method
            try:
                fdr_data = Stats.doFDR(pvalues)

            except ValueError as msg:
                E.warn("failure in q-value computation: %s" % msg)
                E.warn("reverting to Bonferroni correction")
                method = "bonf"
                fdr_data = Stats.FDRResult()
                l = float(len(pvalues))
                fdr_data.mQValues = [min(1.0, x * l) for x in pvalues]

            qvalues = fdr_data.mQValues
        else:
            qvalues = R['p.adjust'](pvalues, method=options.qvalue_method)

        # update qvalues
        results = [x._replace(qvalue=y) for x, y in zip(results, qvalues)]

    outfile = getFileName(options,
                          go=test_ontology,
                          section='pairs',
                          set="pairs")

    outfile.write("\t".join(PairResult._fields) + "\n")
    for result in results:
        outfile.write("\t".join(map(str, result)) + "\n")

    if options.output_filename_pattern:
        outfile.close()
開發者ID:CGATOxford,項目名稱:cgat,代碼行數:101,代碼來源:GO.py

示例15: computeFDRs

def computeFDRs(go_results,
                foreground,
                background,
                options,
                test_ontology,
                gene2go,
                go2info):

    pairs = sorted(go_results.mResults.items())

    E.info("calculating the FDRs using method `%s`" % options.qvalue_method)

    samples = None

    observed_min_pvalues = [min(x[1].mProbabilityOverRepresentation,
                                x[1].mProbabilityUnderRepresentation) for x in pairs]

    fdrs = {}

    method = options.qvalue_method

    if options.qvalue_method == "storey":

        # compute fdr via Storey's method
        try:
            fdr_data = Stats.doFDR(observed_min_pvalues)

        except ValueError as msg:
            E.warn("failure in q-value computation: %s" % msg)
            E.warn("reverting to Bonferroni correction")
            method = "bonf"
            fdr_data = Stats.FDRResult()
            l = float(len(observed_min_pvalues))
            fdr_data.mQValues = [min(1.0, x * l) for x in observed_min_pvalues]

        for pair, qvalue in zip(pairs, fdr_data.mQValues):
            fdrs[pair[0]] = (qvalue, 1.0, 1.0)

    elif options.qvalue_method == "empirical":
        assert options.sample > 0, "requiring a sample size of > 0"

        #######################################################################
        # sampling
        # for each GO-category:
        # get maximum and minimum counts in x samples -> calculate minimum/maximum significance
        # get average and stdev counts in x samples -> calculate z-scores for
        # test set
        samples, simulation_min_pvalues = getSamples(gene2go,
                                                     foreground,
                                                     background,
                                                     options,
                                                     test_ontology,
                                                     go2info)

        # compute P-values from sampling
        observed_min_pvalues.sort()
        observed_min_pvalues = numpy.array(observed_min_pvalues)

        sample_size = options.sample

        for k, v in pairs:

            if k in samples:
                s = samples[k]
            else:
                raise KeyError("category %s not in samples" % k)

            # calculate values for z-score
            if s.mStddev > 0:
                zscore = abs(
                    float(v.mSampleCountsCategory) - s.mMean) / s.mStddev
            else:
                zscore = 0.0

            #############################################################
            # FDR:
            # For each p-Value p at node n:
            #   a = average number of nodes in each simulation run with P-Value < p
            #           this can be obtained from the array of all p-values and all nodes
            #           simply divided by the number of samples.
            #      aka: expfpos=experimental false positive rate
            #   b = number of nodes in observed data, that have a P-Value of less than p.
            #      aka: pos=positives in observed data
            #   fdr = a/b
            pvalue = v.mPValue

            # calculate values for FDR:
            # nfdr = number of entries with P-Value better than node.
            a = 0
            while a < len(simulation_min_pvalues) and \
                    simulation_min_pvalues[a] < pvalue:
                a += 1
            a = float(a) / float(sample_size)
            b = 0
            while b < len(observed_min_pvalues) and \
                    observed_min_pvalues[b] < pvalue:
                b += 1

            if b > 0:
                fdr = min(1.0, float(a) / float(b))
#.........這裏部分代碼省略.........
開發者ID:CGATOxford,項目名稱:cgat,代碼行數:101,代碼來源:GO.py


注:本文中的CGAT.Stats類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。