本文整理匯總了Python中PauliClass.eye_p方法的典型用法代碼示例。如果您正苦於以下問題:Python PauliClass.eye_p方法的具體用法?Python PauliClass.eye_p怎麽用?Python PauliClass.eye_p使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類PauliClass
的用法示例。
在下文中一共展示了PauliClass.eye_p方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: flip_code
# 需要導入模塊: import PauliClass [as 別名]
# 或者: from PauliClass import eye_p [as 別名]
def flip_code(n_correctable, stab_kind='Z'):
"""
Creates an instance of :class:`qecc.StabilizerCode` representing a
code that protects against weight-``n_correctable`` flip errors of a
single kind.
This method generalizes the bit-flip and phase-flip codes, corresponding
to ``stab_kind=qecc.Z`` and ``stab_kind=qecc.X``, respectively.
:param int n_correctable: Maximum weight of the errors that can be
corrected by this code.
:param qecc.Pauli stab_kind: Single-qubit Pauli operator specifying
which kind of operators to use for the new stabilizer code.
:rtype: qecc.StabilizerCode
"""
nq = 2 * n_correctable + 1
stab_kind = p.ensure_pauli(stab_kind)
if len(stab_kind) != 1:
raise ValueError("stab_kind must be single-qubit.")
return StabilizerCode(
[p.eye_p(j) & stab_kind & stab_kind & p.eye_p(nq-j-2) for j in range(nq-1)],
['X'*nq], ['Z'*nq],
label='{}-flip code (t = {})'.format(stab_kind.op, n_correctable)
)
示例2: block_logical_pauli
# 需要導入模塊: import PauliClass [as 別名]
# 或者: from PauliClass import eye_p [as 別名]
def block_logical_pauli(self, P):
r"""
Given a Pauli operator :math:`P` acting on :math:`k`, finds a Pauli
operator :math:`\overline{P}` on :math:`n_k` qubits that corresponds
to the logical operator acting across :math:`k` blocks of this code.
Note that this method is only supported for single logical qubit codes.
"""
if self.nq_logical > 1:
raise NotImplementedError("Mapping of logical Pauli operators is currently only supported for single-qubit codes.")
# TODO: test that phases are handled correctly.
# FIXME: cache this dictionary.
replace_dict = {
'I': p.eye_p(self.nq),
'X': self.logical_xs[0],
'Y': (self.logical_xs[0] * self.logical_zs[0]).mul_phase(1),
'Z': self.logical_zs[0]
}
# FIXME: using eye_p(0) is a hack.
return reduce(op.and_,
(replace_dict[sq_op] for sq_op in P.op),
p.eye_p(0))
示例3: transcoding_cliffords
# 需要導入模塊: import PauliClass [as 別名]
# 或者: from PauliClass import eye_p [as 別名]
def transcoding_cliffords(self,other):
r"""
Returns an iterator onto all :class:`qecc.Clifford` objects which
take states specified by ``self``, and
return states specified by ``other``.
:arg other: :class:`qecc.StabilizerCode`
"""
#Preliminaries:
stab_in = self.group_generators
stab_out = other.group_generators
xs_in = self.logical_xs
xs_out = other.logical_xs
zs_in = self.logical_zs
zs_out = other.logical_zs
nq_in=len(stab_in[0])
nq_out=len(stab_out[0])
nq_anc=abs(nq_in-nq_out)
#Decide left side:
if nq_in<nq_out:
stab_left=stab_out
xs_left=xs_out
zs_left=zs_out
stab_right=stab_in
xs_right=xs_in
zs_right=zs_in
else:
stab_right=stab_out
xs_right=xs_out
zs_right=zs_out
stab_left=stab_in
xs_left=xs_in
zs_left=zs_in
cliff_xouts_left=stab_left+xs_left
cliff_zouts_left=[Unspecified]*len(stab_left)+zs_left
cliff_left=next(c.Clifford(cliff_xouts_left,cliff_zouts_left).constraint_completions())
list_left=cliff_left.xout+cliff_left.zout
for mcset in p.mutually_commuting_sets(n_elems=len(stab_left)-len(stab_right),n_bits=nq_anc):
temp_xouts_right = p.pad(stab_right,lower_right=mcset) + [elem & p.eye_p(nq_anc) for elem in xs_right]
temp_zouts_right = [Unspecified]*len(stab_left) + [elem & p.eye_p(nq_anc) for elem in zs_right]
for completion in c.Clifford(temp_xouts_right,temp_zouts_right).constraint_completions():
if nq_in < nq_out:
yield c.gen_cliff(completion.xout+completion.zout,list_left)
else:
yield c.gen_cliff(list_left,completion.xout+completion.zout)
示例4: concatenate
# 需要導入模塊: import PauliClass [as 別名]
# 或者: from PauliClass import eye_p [as 別名]
def concatenate(self,other):
r"""
Returns the stabilizer for a concatenated code, given the
stabilizers for two codes. At this point, it only works for two
:math:`k=1` codes.
"""
if self.nq_logical > 1 or other.nq_logical > 1:
raise NotImplementedError("Concatenation is currently only supported for single-qubit codes.")
nq_self = self.nq
nq_other = other.nq
nq_new = nq_self * nq_other
# To obtain the new generators, we must apply the stabilizer generators
# to each block of the inner code (self), as well as the stabilizer
# generators of the outer code (other), using the inner logical Paulis
# for the outer stabilizer generators.
# Making the stabilizer generators from the inner (L0) code is straight-
# forward: we repeat the code other.nq times, once on each block of the
# outer code. We use that PauliList supports tensor products.
new_generators = sum(
(
p.eye_p(nq_self * k) & self.group_generators & p.eye_p(nq_self * (nq_other - k - 1))
for k in range(nq_other)
),
pc.PauliList())
# Each of the stabilizer generators due to the outer (L1) code can be
# found by computing the block-logical operator across multiple L0
# blocks, as implemented by StabilizerCode.block_logical_pauli.
new_generators += map(self.block_logical_pauli, other.group_generators)
# In the same way, the logical operators are also found by mapping L1
# operators onto L0 qubits.
# This completes the definition of the concatenated code, and so we are
# done.
return StabilizerCode(new_generators,
logical_xs=map(self.block_logical_pauli, other.logical_xs),
logical_zs=map(self.block_logical_pauli, other.logical_zs)
)
示例5: pad
# 需要導入模塊: import PauliClass [as 別名]
# 或者: from PauliClass import eye_p [as 別名]
def pad(self, extra_bits=0, lower_right=None):
r"""
Takes a PauliList, and returns a new PauliList,
appending ``extra_bits`` qubits, with stabilizer operators specified by
``lower_right``.
:arg pauli_list_in: list of Pauli operators to be padded.
:param int extra_bits: Number of extra bits to be appended to the system.
:param lower_right: list of `qecc.Pauli` operators, acting on `extra_bits` qubits.
:rtype: list of :class:`qecc.Pauli` objects.
Example:
>>> import qecc as q
>>> pauli_list = q.PauliList('XXX', 'YIY', 'ZZI')
>>> pauli_list.pad(extra_bits=2, lower_right=q.PauliList('IX','ZI'))
PauliList(i^0 XXXII, i^0 YIYII, i^0 ZZIII, i^0 IIIIX, i^0 IIIZI)
"""
len_P = len(self)
nq_P = len(self[0]) if len_P > 0 else 0
if extra_bits == 0 and lower_right is None or len(lower_right) == 0:
return PauliList(self)
elif len(lower_right) != 0:
extra_bits=len(lower_right[0])
setout = PauliList([pc.Pauli(pauli.op + 'I'*extra_bits) for pauli in self])
if lower_right is None:
setout += [pc.eye_p(nq_P + extra_bits)] * extra_bits
else:
setout += [pc.eye_p(nq_P) & P for P in lower_right]
return setout
示例6: __and__
# 需要導入模塊: import PauliClass [as 別名]
# 或者: from PauliClass import eye_p [as 別名]
def __and__(self, other):
"""Returns the Kronecker product of two stabilizer codes,
given each of the constituent codes. """
if not isinstance(other, StabilizerCode):
return NotImplemented
return StabilizerCode(
(self.group_generators & p.eye_p(other.nq)) +
(p.eye_p(self.nq) & other.group_generators),
(self.logical_xs & p.eye_p(other.nq)) +
(p.eye_p(self.nq) & other.logical_xs),
(self.logical_zs & p.eye_p(other.nq)) +
(p.eye_p(self.nq) & other.logical_zs),
)
示例7: star_decoder
# 需要導入模塊: import PauliClass [as 別名]
# 或者: from PauliClass import eye_p [as 別名]
def star_decoder(self, for_enc=None, as_dict=False):
r"""
Returns a tuple of a decoding Clifford and a :class:`qecc.PauliList`
specifying the recovery operation to perform as a function of the result
of a :math:`Z^{\otimes{n - k}}` measurement on the ancilla register.
For syndromes corresponding to errors of weight greater than the distance,
the relevant element of the recovery list will be set to
:obj:`qecc.Unspecified`.
:param for_enc: If not ``None``, specifies to use a given Clifford
operator as the encoder, instead of the first element yielded by
:meth:`encoding_cliffords`.
:param bool as_dict: If ``True``, returns a dictionary from recovery
operators to syndromes that indicate that recovery.
"""
def error_to_pauli(error):
if error == p.I.as_clifford():
return "I"
if error == p.X.as_clifford():
return "X"
if error == p.Y.as_clifford():
return "Y"
if error == p.Z.as_clifford():
return "Z"
if for_enc is None:
encoder = self.encoding_cliffords().next()
else:
encoder = for_enc
decoder = encoder.inv()
errors = pc.PauliList(p.eye_p(self.nq)) + pc.PauliList(p.paulis_by_weight(self.nq, self.n_correctable))
syndrome_dict = defaultdict(lambda: Unspecified)
syndrome_meas = [p.elem_gen(self.nq, idx, 'Z') for idx in range(self.nq_logical, self.nq)]
for error in errors:
effective_gate = decoder * error.as_clifford() * encoder
# FIXME: the following line emulates measurement until we have a real
# measurement simulation method.
syndrome = tuple([effective_gate(meas).ph / 2 for meas in syndrome_meas])
recovery = "".join([
# FIXME: the following is a broken hack to get the phases on the logical qubit register.
error_to_pauli(c.Clifford([effective_gate.xout[idx][idx]], [effective_gate.zout[idx][idx]]))
for idx in range(self.nq_logical)
])
# For degenerate codes, the syndromes can collide, so long as we
# correct the same way for each.
if syndrome in syndrome_dict and syndrome_dict[syndrome] != recovery:
raise RuntimeError('Syndrome {} has collided.'.format(syndrome))
syndrome_dict[syndrome] = recovery
if as_dict:
outdict = dict()
keyfn = lambda (syndrome, recovery): recovery
data = sorted(syndrome_dict.items(), key=keyfn)
for recovery, syndrome_group in it.groupby(data, keyfn):
outdict[recovery] = [syn[0] for syn in syndrome_group]
return decoder, outdict
else:
recovery_list = pc.PauliList(syndrome_dict[syndrome] for syndrome in it.product(range(2), repeat=self.n_constraints))
return decoder, recovery_list
示例8: clifford_as_unitary
# 需要導入模塊: import PauliClass [as 別名]
# 或者: from PauliClass import eye_p [as 別名]
def clifford_as_unitary(C):
nq = len(C)
dim = 2**nq
U = np.zeros((dim,dim), dtype='complex')
psi_0 = mutual_eigenspace(map(pauli_as_unitary, C.zout)).T
for b in xrange(dim):
bits = '{{0:0>{nq}b}}'.format(nq=nq).format(b)
Xb = reduce(op.mul, (C.xout[idx] for idx in xrange(nq) if bits[idx] == '1'), pc.eye_p(nq)).as_unitary()
for a in xrange(dim):
bra_a = np.zeros((1, dim))
bra_a[0, a] = 1
U[a, b] = reduce(np.dot, [bra_a, Xb, psi_0])[0,0]
return U