當前位置: 首頁>>代碼示例>>Python>>正文


Python PauliClass類代碼示例

本文整理匯總了Python中PauliClass的典型用法代碼示例。如果您正苦於以下問題:Python PauliClass類的具體用法?Python PauliClass怎麽用?Python PauliClass使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了PauliClass類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: block_logical_pauli

 def block_logical_pauli(self, P):
     r"""
     Given a Pauli operator :math:`P` acting on :math:`k`, finds a Pauli
     operator :math:`\overline{P}` on :math:`n_k` qubits that corresponds
     to the logical operator acting across :math:`k` blocks of this code.
     
     Note that this method is only supported for single logical qubit codes.
     """
     
     if self.nq_logical > 1:
         raise NotImplementedError("Mapping of logical Pauli operators is currently only supported for single-qubit codes.")
     
     # TODO: test that phases are handled correctly.
     
     # FIXME: cache this dictionary.
     replace_dict = {
         'I': p.eye_p(self.nq),
         'X': self.logical_xs[0],
         'Y': (self.logical_xs[0] * self.logical_zs[0]).mul_phase(1),
         'Z': self.logical_zs[0]
     }
     
     # FIXME: using eye_p(0) is a hack.
     return reduce(op.and_, 
             (replace_dict[sq_op] for sq_op in P.op),
             p.eye_p(0))
開發者ID:Roger-luo,項目名稱:python-quaec,代碼行數:26,代碼來源:stab.py

示例2: flip_code

 def flip_code(n_correctable, stab_kind='Z'):
     """
     Creates an instance of :class:`qecc.StabilizerCode` representing a
     code that protects against weight-``n_correctable`` flip errors of a
     single kind.
     
     This method generalizes the bit-flip and phase-flip codes, corresponding
     to ``stab_kind=qecc.Z`` and ``stab_kind=qecc.X``, respectively.
     
     :param int n_correctable: Maximum weight of the errors that can be
         corrected by this code.
     :param qecc.Pauli stab_kind: Single-qubit Pauli operator specifying
         which kind of operators to use for the new stabilizer code.
     :rtype: qecc.StabilizerCode
     """
     nq = 2 * n_correctable + 1
     stab_kind = p.ensure_pauli(stab_kind)
     if len(stab_kind) != 1:
         raise ValueError("stab_kind must be single-qubit.")
     
     return StabilizerCode(
         [p.eye_p(j) & stab_kind & stab_kind & p.eye_p(nq-j-2) for j in range(nq-1)],
         ['X'*nq], ['Z'*nq],
         label='{}-flip code (t = {})'.format(stab_kind.op, n_correctable)
     )
開發者ID:Roger-luo,項目名稱:python-quaec,代碼行數:25,代碼來源:stab.py

示例3: transcoding_cliffords

    def transcoding_cliffords(self,other):
        r"""
        Returns an iterator onto all :class:`qecc.Clifford` objects which 
        take states specified by ``self``, and
        return states specified by ``other``.

        :arg other: :class:`qecc.StabilizerCode`
        """
        #Preliminaries:

        stab_in = self.group_generators
        stab_out = other.group_generators
        xs_in = self.logical_xs
        xs_out = other.logical_xs
        zs_in = self.logical_zs
        zs_out = other.logical_zs
        
        nq_in=len(stab_in[0])
        nq_out=len(stab_out[0])
        nq_anc=abs(nq_in-nq_out)

        #Decide left side:
        if nq_in<nq_out:
            stab_left=stab_out
            xs_left=xs_out
            zs_left=zs_out
            stab_right=stab_in
            xs_right=xs_in
            zs_right=zs_in
        else:
            stab_right=stab_out
            xs_right=xs_out
            zs_right=zs_out
            stab_left=stab_in
            xs_left=xs_in
            zs_left=zs_in
            
        cliff_xouts_left=stab_left+xs_left
        cliff_zouts_left=[Unspecified]*len(stab_left)+zs_left
        
        cliff_left=c.Clifford(cliff_xouts_left,cliff_zouts_left).constraint_completions().next()
        list_left=cliff_left.xout+cliff_left.zout

        for mcset in p.mutually_commuting_sets(n_elems=len(stab_left)-len(stab_right),n_bits=nq_anc):
            temp_xouts_right = p.pad(stab_right,lower_right=mcset) + map(lambda elem: elem & p.eye_p(nq_anc), xs_right)
            temp_zouts_right = [Unspecified]*len(stab_left) + map(lambda elem: elem & p.eye_p(nq_anc), zs_right)
        for completion in c.Clifford(temp_xouts_right,temp_zouts_right).constraint_completions():
            if nq_in < nq_out:
                yield c.gen_cliff(completion.xout+completion.zout,list_left)
            else:
                yield c.gen_cliff(list_left,completion.xout+completion.zout)
開發者ID:Roger-luo,項目名稱:python-quaec,代碼行數:51,代碼來源:stab.py

示例4: min_len_transcoding_clifford

 def min_len_transcoding_clifford(self,other):
     """
     Searches the iterator provided by `transcoding_cliffords` for the shortest
     circuit decomposition.
     """
     circuit_iter=map(lambda p: p.as_bsm().circuit_decomposition(), self.transcoding_cliffords(other))
     return min(*circuit_iter)
開發者ID:Roger-luo,項目名稱:python-quaec,代碼行數:7,代碼來源:stab.py

示例5: in_group_generated_by

def in_group_generated_by(*paulis):
    """
    Returns a predicate that selects Pauli operators in the group generated by
    a given list of generators.
    """
    # Warning: This is inefficient for large groups!
    paulis = list(map(pc.ensure_pauli, paulis))
    
    return PauliMembershipPredicate(pc.from_generators(paulis), ignore_phase=True)
開發者ID:cgranade,項目名稱:python-quaec,代碼行數:9,代碼來源:pred.py

示例6: concatenate

 def concatenate(self,other):
     r"""
     Returns the stabilizer for a concatenated code, given the 
     stabilizers for two codes. At this point, it only works for two
     :math:`k=1` codes.
     """
     
     if self.nq_logical > 1 or other.nq_logical > 1:
         raise NotImplementedError("Concatenation is currently only supported for single-qubit codes.")
     
     nq_self = self.nq
     nq_other = other.nq
     nq_new = nq_self * nq_other
     
     # To obtain the new generators, we must apply the stabilizer generators
     # to each block of the inner code (self), as well as the stabilizer
     # generators of the outer code (other), using the inner logical Paulis
     # for the outer stabilizer generators.
     
     # Making the stabilizer generators from the inner (L0) code is straight-
     # forward: we repeat the code other.nq times, once on each block of the
     # outer code. We use that PauliList supports tensor products.
     new_generators = sum(
         (
             p.eye_p(nq_self * k) & self.group_generators & p.eye_p(nq_self * (nq_other - k - 1))
             for k in range(nq_other)
         ),
         pc.PauliList())
             
     # Each of the stabilizer generators due to the outer (L1) code can be
     # found by computing the block-logical operator across multiple L0
     # blocks, as implemented by StabilizerCode.block_logical_pauli.
     new_generators += map(self.block_logical_pauli, other.group_generators)
         
     # In the same way, the logical operators are also found by mapping L1
     # operators onto L0 qubits.
     
     # This completes the definition of the concatenated code, and so we are
     # done.
     
     return StabilizerCode(new_generators,
         logical_xs=map(self.block_logical_pauli, other.logical_xs),
         logical_zs=map(self.block_logical_pauli, other.logical_zs)
     )
開發者ID:Roger-luo,項目名稱:python-quaec,代碼行數:44,代碼來源:stab.py

示例7: ancilla_register

 def ancilla_register(nq=1):
     r"""
     Creates an instance of :class:`qecc.StabilizerCode` representing an
     ancilla register of ``nq`` qubits, initialized in the state
     :math:`\left|0\right\rangle^{\otimes \text{nq}}`.
     
     :rtype: qecc.StabilizerCode
     """
     return StabilizerCode(
         p.elem_gens(nq)[1],
         [], []
     )
開發者ID:Roger-luo,項目名稱:python-quaec,代碼行數:12,代碼來源:stab.py

示例8: possible_faults

def possible_faults(circuit):
    """
    Takes a sub-circuit which has been padded with waits, and returns an
    iterator onto Paulis which may occur as faults after this sub-circuit.
    
    :param qecc.Circuit circuit: Subcircuit to in which faults are to be
        considered.
        
    """
    return it.chain.from_iterable(
        pc.restricted_pauli_group(loc.qubits, circuit.nq)
        for loc in circuit
    )
開發者ID:tjochymoconnor,項目名稱:python-quaec,代碼行數:13,代碼來源:circuit.py

示例9: unencoded_state

 def unencoded_state(nq_logical=1, nq_ancilla=0):
     """
     Creates an instance of :class:`qecc.StabilizerCode` representing an
     unencoded register of ``nq_logical`` qubits tensored with an ancilla
     register of ``nq_ancilla`` qubits.
     
     :param int nq_logical: Number of qubits to 
     :rtype: qecc.StabilizerCode
     """
     return (
         StabilizerCode([], *p.elem_gens(nq_logical)) &
         StabilizerCode.ancilla_register(nq_ancilla)
     )
開發者ID:Roger-luo,項目名稱:python-quaec,代碼行數:13,代碼來源:stab.py

示例10: logical_pauli_group

 def logical_pauli_group(self, incl_identity=True):
     r"""
     Iterator onto the group :math:`\text{N}(S) / S`, where :math:`S` is
     the stabilizer group describing this code. Each member of the group
     is specified by a coset representative drawn from the respective
     elements of :math:`\text{N}(S) / S`. These representatives are
     chosen to be the logical :math:`X` and :math:`Z` operators specified
     as properties of this instance.
     
     :param bool incl_identity: If ``False``, the identity coset :math:`S`
         is excluded from this iterator.
     :yields: A representative for each element of :math:`\text{N}(S) / S`.
     """
     return p.from_generators(self.logical_xs + self.logical_zs, incl_identity=incl_identity)
開發者ID:Roger-luo,項目名稱:python-quaec,代碼行數:14,代碼來源:stab.py

示例11: minimize_distance_from

 def minimize_distance_from(self, other, quiet=True):
     """
     Reorders the stabilizer group generators of this code to minimize
     the Hamming distance with the group generators of another code,
     using a greedy heuristic algorithm.
     """
     
     self_gens = self.group_generators
     other_gens = other.group_generators
     
     for idx_generator in range(len(self_gens)):
         min_hdist    = self.nq + 1 # Effectively infinite.
         min_wt       = self.nq + 1
         best_gen = None
         best_gen_decomp = ()
         
         for stab_elems in p.powerset(self_gens[idx_generator:]):
             if len(stab_elems) > 0:
                 stab_elem = reduce(op.mul, stab_elems)
                 hd = stab_elem.hamming_dist(other_gens[idx_generator])
                 
                 if hd <= min_hdist and stab_elem.wt <= min_wt and (hd < min_hdist or stab_elem.wt < min_wt):
                     min_hdist = hd
                     min_wt    = stab_elem.wt
                     best_gen  = stab_elem
                     best_gen_decomp = stab_elems
                 
         assert best_gen is not None, "Powerset iteration failed."
                 
         if best_gen in self_gens:
             # Swap so that it lies at the front.
             idx = self_gens.index(best_gen)
             if not quiet and idx != idx_generator:
                 print 'Swap move: {} <-> {}'.format(idx_generator, idx)
             self_gens[idx_generator], self_gens[idx] = self_gens[idx], self_gens[idx_generator]
             
         else:
             # Set the head element to best_gen, correcting the rest
             # as needed.
             if self_gens[idx_generator] in best_gen_decomp:
                 if not quiet:
                     print 'Set move: {}  =  {}'.format(idx_generator, best_gen)
                 self_gens[idx_generator] = best_gen
             else:
                 if not quiet:
                     print 'Mul move: {} *=  {}'.format(idx_generator, best_gen)
                 self_gens[idx_generator] *= best_gen
                 
     return self
開發者ID:Roger-luo,項目名稱:python-quaec,代碼行數:49,代碼來源:stab.py

示例12: pad

    def pad(self, extra_bits=0, lower_right=None):
        r"""
        Takes a PauliList, and returns a new PauliList, 
        appending ``extra_bits`` qubits, with stabilizer operators specified by
        ``lower_right``.
        
        :arg pauli_list_in: list of Pauli operators to be padded. 
        :param int extra_bits: Number of extra bits to be appended to the system.
        :param lower_right: list of `qecc.Pauli` operators, acting on `extra_bits` qubits.
        :rtype: list of :class:`qecc.Pauli` objects.
        
        Example:
        
        >>> import qecc as q
        >>> pauli_list = q.PauliList('XXX', 'YIY', 'ZZI')
        >>> pauli_list.pad(extra_bits=2, lower_right=q.PauliList('IX','ZI'))
        PauliList(i^0 XXXII, i^0 YIYII, i^0 ZZIII, i^0 IIIIX, i^0 IIIZI)

        """
        
        len_P = len(self)
        nq_P  = len(self[0]) if len_P > 0 else 0

        if extra_bits == 0 and lower_right is None or len(lower_right) == 0:
            return PauliList(self)
        elif len(lower_right) != 0:
            extra_bits=len(lower_right[0])
                
        setout = PauliList([pc.Pauli(pauli.op + 'I'*extra_bits) for pauli in self])
            
        if lower_right is None:
            setout += [pc.eye_p(nq_P + extra_bits)] * extra_bits
        else:
            setout += [pc.eye_p(nq_P) & P for P in lower_right]
                
        return setout    
開發者ID:Roger-luo,項目名稱:python-quaec,代碼行數:36,代碼來源:paulicollections.py

示例13: syndrome_to_recovery_operator

    def syndrome_to_recovery_operator(self,synd): 
        r"""
        Returns a Pauli operator which corrects an error on the stabilizer code
        ``self``, given the syndrome ``synd``, a bitstring indicating which 
        generators the implied error commutes with and anti-commutes with. 

        :param synd: a string, list, tuple or other sequence type with entries
            consisting only of 0 or 1. This parameter will be certified before
            use.
        """
        
        # If the syndrome is an integer, change it to a bitstring by
        # using string formatting.
        if isinstance(synd,int):
            fmt = "{{0:0>{n}b}}".format(n=self.n_constraints)   
            synd = fmt.format(synd)
            
        # Ensures synd is a list of integers by mapping int onto the list.
        synd=map(int, synd)
        
        # Check that the syndrome is all zeros and ones.
        acceptable_syndrome = all([bit == 0 or bit == 1 for bit in synd])
        if not acceptable_syndrome:
            raise ValueError("Please input a syndrome which is an iterable onto 0 and 1.")
        if len(synd) != self.nq - self.nq_logical:
            raise ValueError("Syndrome must account for n-k bits of syndrome data.")
        
        # We produce commutation and anti_commutation constraints from synd.
        anti_coms = list(it.compress(self.group_generators,synd))
        coms = list(it.compress(self.group_generators,[1-bit for bit in synd]))
        for op_weight in range(self.nq+1):
            #We loop over all possible weights. As soon as we find an operator
            #that satisfies the commutation and anti-commutation constraints,
            #we return it:
            low_weight_ops=map(p.remove_phase,
                               cs.solve_commutation_constraints(coms,anti_coms,
                               search_in_set=p.paulis_by_weight(self.nq,
                               op_weight)))
            if low_weight_ops:
                break 
        return low_weight_ops[0]
開發者ID:Roger-luo,項目名稱:python-quaec,代碼行數:41,代碼來源:stab.py

示例14: centralizer_gens

 def centralizer_gens(self, group_gens=None):
     r"""
     Returns the generators of the centralizer group
     :math:`\mathrm{C}(P_1, \dots, P_k)`, where :math:`P_i` is the :math:`i^{\text{th}}`
     element of this list. See :meth:`qecc.Pauli.centralizer_gens` for
     more information.
     """
     if group_gens is None:
         # NOTE: Assumes all Paulis contained by self have the same nq.
         Xs, Zs = pc.elem_gens(len(self[0]))
         group_gens = Xs + Zs
         
     if len(self) == 0:
         # C({}) = G
         return PauliList(group_gens)
         
     centralizer_0 = self[0].centralizer_gens(group_gens=group_gens)
         
     if len(self) == 1:
         return centralizer_0
     else:
         return self[1:].centralizer_gens(group_gens=centralizer_0)
開發者ID:Roger-luo,項目名稱:python-quaec,代碼行數:22,代碼來源:paulicollections.py

示例15: __and__

 def __and__(self, other):
     """Returns the Kronecker product of two stabilizer codes,
     given each of the constituent codes. """
     
     if not isinstance(other, StabilizerCode):
         return NotImplemented
     
     return StabilizerCode(
         (self.group_generators & p.eye_p(other.nq)) +
         (p.eye_p(self.nq) & other.group_generators),
         
         (self.logical_xs & p.eye_p(other.nq)) +
         (p.eye_p(self.nq) & other.logical_xs),
         
         (self.logical_zs & p.eye_p(other.nq)) +
         (p.eye_p(self.nq) & other.logical_zs),
     )
開發者ID:Roger-luo,項目名稱:python-quaec,代碼行數:17,代碼來源:stab.py


注:本文中的PauliClass類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。