當前位置: 首頁>>代碼示例>>Python>>正文


Python feature_selection.RFE屬性代碼示例

本文整理匯總了Python中sklearn.feature_selection.RFE屬性的典型用法代碼示例。如果您正苦於以下問題:Python feature_selection.RFE屬性的具體用法?Python feature_selection.RFE怎麽用?Python feature_selection.RFE使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在sklearn.feature_selection的用法示例。


在下文中一共展示了feature_selection.RFE屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: GetSelectedFeatureIndex

# 需要導入模塊: from sklearn import feature_selection [as 別名]
# 或者: from sklearn.feature_selection import RFE [as 別名]
def GetSelectedFeatureIndex(self, data_container):
        data = data_container.GetArray()
        data /= np.linalg.norm(data, ord=2, axis=0)
        label = data_container.GetLabel()

        if data.shape[1] < self.GetSelectedFeatureNumber():
            print('RFE: The number of features {:d} in data container is smaller than the required number {:d}'.format(
                data.shape[1], self.GetSelectedFeatureNumber()))
            self.SetSelectedFeatureNumber(data.shape[1])

        fs = RFE(self.__classifier, self.GetSelectedFeatureNumber(), step=0.05)
        fs.fit(data, label)
        feature_index = fs.get_support(True)
        self._rank = fs.ranking_

        return feature_index.tolist() 
開發者ID:salan668,項目名稱:FAE,代碼行數:18,代碼來源:FeatureSelector.py

示例2: rfe_selection

# 需要導入模塊: from sklearn import feature_selection [as 別名]
# 或者: from sklearn.feature_selection import RFE [as 別名]
def rfe_selection(X,y,n_features):
	"""
	Performs the Recursive Feature Elimination method and selects the top ranking features

	Keyword arguments:
	X -- The feature vectors
	y -- The target vector
	n_features -- n best ranked features
	"""

	if verbose:
		print '\nPerforming Feature Selection based on the Recursive Feature Elimination method ...'

	clf=RandomForestClassifierWithCoef(n_estimators=10,n_jobs=-1)
	fs= RFE(clf, n_features, step=1)
	fs= fs.fit(X,y)
	ranks=fs.ranking_

	feature_indexes=[]
	for i in xrange(len(ranks)):
		if ranks[i]==1:
			feature_indexes+=[i]

	return X[:,feature_indexes[0:n_features]],feature_indexes[0:n_features]		#return selected features and original index features 
開發者ID:alexpnt,項目名稱:default-credit-card-prediction,代碼行數:26,代碼來源:feature_selection.py

示例3: test_objectmapper

# 需要導入模塊: from sklearn import feature_selection [as 別名]
# 或者: from sklearn.feature_selection import RFE [as 別名]
def test_objectmapper(self):
        df = pdml.ModelFrame([])
        self.assertIs(df.feature_selection.GenericUnivariateSelect,
                      fs.GenericUnivariateSelect)
        self.assertIs(df.feature_selection.SelectPercentile,
                      fs.SelectPercentile)
        self.assertIs(df.feature_selection.SelectKBest, fs.SelectKBest)
        self.assertIs(df.feature_selection.SelectFpr, fs.SelectFpr)
        self.assertIs(df.feature_selection.SelectFromModel,
                      fs.SelectFromModel)
        self.assertIs(df.feature_selection.SelectFdr, fs.SelectFdr)
        self.assertIs(df.feature_selection.SelectFwe, fs.SelectFwe)
        self.assertIs(df.feature_selection.RFE, fs.RFE)
        self.assertIs(df.feature_selection.RFECV, fs.RFECV)
        self.assertIs(df.feature_selection.VarianceThreshold,
                      fs.VarianceThreshold) 
開發者ID:pandas-ml,項目名稱:pandas-ml,代碼行數:18,代碼來源:test_feature_selection.py

示例4: ReducedFeaturesDF

# 需要導入模塊: from sklearn import feature_selection [as 別名]
# 或者: from sklearn.feature_selection import RFE [as 別名]
def ReducedFeaturesDF(X,y):
        '''
        Returns a dataframe with only a subset of features/columns retained
        '''
        from sklearn.feature_selection import RFE
        est = LinearSVC( penalty='l1', loss='l2', dual=False, class_weight='auto')
#        selectK = SelectKBest(score_func = f_classif, k=45)
        selectRFE = RFE(estimator=est, n_features_to_select=22, step=0.15)
        selectK=selectRFE

        selectK.fit(X,y)
        selectK_mask=selectK.get_support()
        K_featnames = feature_names[selectK_mask]
        print ("reduced RFE features:")
        print(K_featnames)
        Reduced_df = pd.read_csv(filename, index_col=0)
        Reduced_df = Reduced_df[Reduced_df.columns[selectK_mask]]
#        Reduced_df.to_csv('REDUCED_Feat.csv')
        return Reduced_df

#    ReducedFeaturesDF(X,y)
    # z=pd.DataFrame(data=X_SGD,index=y)
    # z.to_csv('REDUCED_Feat.csv') 
開發者ID:ddofer,項目名稱:ProFET,代碼行數:25,代碼來源:Model_Parameters_CV.py

示例5: rfe_multiprocess

# 需要導入模塊: from sklearn import feature_selection [as 別名]
# 或者: from sklearn.feature_selection import RFE [as 別名]
def rfe_multiprocess(i, dets, deform, body_num, x, measure, k_features):
  sys.stdout.write('>> calc rfe map NO.%d\n'%(i))
  y = np.array(dets).reshape(body_num, 1)
  model = LinearRegression()
  # recurcive feature elimination
  rfe = RFE(model, k_features)
  rfe.fit(x, y.ravel())
  # mask.append(rfe.support_)
  flag = np.array(rfe.support_).reshape(utils.M_NUM, 1)
  flag = flag.repeat(body_num, axis=1)

  # calculte linear mapping mat
  S = np.array(deform)
  S.shape = (S.size, 1)
  m = np.array(measure[flag])
  m.shape = (k_features, body_num)
  M = build_equation(m, 9)
  MtM = M.transpose().dot(M)
  MtS = M.transpose().dot(S)
  ans = np.array(scipy.sparse.linalg.spsolve(MtM, MtS))
  ans.shape = (9, k_features)
  return [ans, rfe.support_] 
開發者ID:1900zyh,項目名稱:3D-Human-Body-Shape,代碼行數:24,代碼來源:train.py

示例6: __init__

# 需要導入模塊: from sklearn import feature_selection [as 別名]
# 或者: from sklearn.feature_selection import RFE [as 別名]
def __init__(self, selected_feature_number=1, classifier=SVC(kernel='linear')):
        super(FeatureSelectByRFE, self).__init__(name='RFE', selected_feature_number=selected_feature_number)
        self.__classifier = classifier
        self._rank = None
        self._selected_features = [] 
開發者ID:salan668,項目名稱:FAE,代碼行數:7,代碼來源:FeatureSelector.py

示例7: GetDescription

# 需要導入模塊: from sklearn import feature_selection [as 別名]
# 或者: from sklearn.feature_selection import RFE [as 別名]
def GetDescription(self):
        text = "Before build the model, we used recursive feature elimination (RFE) to select features. The goal of RFE " \
               "is to select features based on a classifier by recursively considering smaller set of the features. "
        return text 
開發者ID:salan668,項目名稱:FAE,代碼行數:6,代碼來源:FeatureSelector.py

示例8: get_initial_regression_model_recommendation

# 需要導入模塊: from sklearn import feature_selection [as 別名]
# 或者: from sklearn.feature_selection import RFE [as 別名]
def get_initial_regression_model_recommendation(project_id, dataset_id, dependent_variable_id=None, recommendation_type=MRT.LASSO.value, table_layout=MCT.LEAVE_ONE_OUT.value, data_size_cutoff=current_app.config['ANALYSIS_DATA_SIZE_CUTOFF'], categorical_value_limit=current_app.config['ANALYSIS_CATEGORICAL_VALUE_LIMIT']):
    df = get_data(project_id=project_id, dataset_id=dataset_id)
    if len(df) > data_size_cutoff:
        df = df.sample(data_size_cutoff)
    field_properties = db_access.get_field_properties(project_id, dataset_id)
    quantitative_field_properties = [ fp for fp in field_properties if fp['general_type'] == 'q']

    dependent_variable = next((f for f in field_properties if f['id'] == dependent_variable_id), None) \
        if dependent_variable_id \
        else np.random.choice(quantitative_field_properties, size=1)[0]

    independent_variables = []
    for fp in field_properties:
        if (fp['name'] != dependent_variable['name']):
            if (fp['general_type'] == 'c' and (fp['is_unique'] or len(fp['unique_values']) > categorical_value_limit)):
                continue
            independent_variables.append(fp)

    recommendationTypeToFunction = {
        MRT.FORWARD_R2.value: forward_r2,
        MRT.LASSO.value: lasso,
        MRT.RFE.value: recursive_feature_elimination,
        MRT.FORWARD_F.value: f_regression
    }

    result = recommendationTypeToFunction[recommendation_type](df, dependent_variable, independent_variables)

    return {
        'recommended': True,
        'table_layout': table_layout,
        'recommendation_type': recommendation_type,
        'dependent_variable_id': dependent_variable['id'],
        'independent_variables_ids': [ x['id'] for x in result ],
    } 
開發者ID:MacroConnections,項目名稱:DIVE-backend,代碼行數:36,代碼來源:model_recommendation.py

示例9: recursive_feature_elimination

# 需要導入模塊: from sklearn import feature_selection [as 別名]
# 或者: from sklearn.feature_selection import RFE [as 別名]
def recursive_feature_elimination(df, dependent_variable, independent_variables, interaction_terms=[], model_limit=5):
    considered_independent_variables_per_model, patsy_models = \
        construct_models(df, dependent_variable, independent_variables, interaction_terms, table_layout=MCT.ALL_VARIABLES.value)
    y, X = dmatrices(patsy_models[0], df, return_type='dataframe')

    estimator = SVR(kernel='linear')
    selector = RFE(estimator, 5, step=1)
    selector = selector.fit(X, y)
    logger.info(selector.support_)
    logger.info(selector.ranking_)
    return 
開發者ID:MacroConnections,項目名稱:DIVE-backend,代碼行數:13,代碼來源:model_recommendation.py

示例10: lr_with_fs

# 需要導入模塊: from sklearn import feature_selection [as 別名]
# 或者: from sklearn.feature_selection import RFE [as 別名]
def lr_with_fs():
    """
    Submission: lr_with_fs_0620_02.csv
    E_val: <missing>
    E_in: 0.856252488379
    E_out: 0.8552577388980213
    """
    from sklearn.linear_model import LogisticRegressionCV
    from sklearn.preprocessing import StandardScaler
    from sklearn.pipeline import Pipeline

    X = util.fetch(util.cache_path('train_X_before_2014-08-01_22-00-47'))
    y = util.fetch(util.cache_path('train_y_before_2014-08-01_22-00-47'))

    raw_scaler = StandardScaler()
    raw_scaler.fit(X)
    X_scaled = raw_scaler.transform(X)

    rfe = util.fetch(util.cache_path('feature_selection.RFE.21'))

    X_pruned = rfe.transform(X_scaled)

    new_scaler = StandardScaler()
    new_scaler.fit(X_pruned)
    X_new = new_scaler.transform(X_pruned)

    clf = LogisticRegressionCV(cv=10, scoring='roc_auc', n_jobs=-1)
    clf.fit(X_new, y)
    print(auc_score(clf, X_new, y))
    to_submission(Pipeline([('scale_raw', raw_scaler),
                            ('rfe', rfe),
                            ('scale_new', new_scaler),
                            ('lr', clf)]), 'lr_with_fs_0620_02') 
開發者ID:its-fun,項目名稱:kddcup2015,代碼行數:35,代碼來源:modeling.py

示例11: feature_selection

# 需要導入模塊: from sklearn import feature_selection [as 別名]
# 或者: from sklearn.feature_selection import RFE [as 別名]
def feature_selection(matrix, labels, train_ind, fnum):
    """
        matrix       : feature matrix (num_subjects x num_features)
        labels       : ground truth labels (num_subjects x 1)
        train_ind    : indices of the training samples
        fnum         : size of the feature vector after feature selection

    return:
        x_data      : feature matrix of lower dimension (num_subjects x fnum)
    """

    estimator = RidgeClassifier()
    selector = RFE(estimator, fnum, step=100, verbose=1)

    featureX = matrix[train_ind, :]
    featureY = labels[train_ind]
    selector = selector.fit(featureX, featureY.ravel())
    x_data = selector.transform(matrix)

    print("Number of labeled samples %d" % len(train_ind))
    print("Number of features selected %d" % x_data.shape[1])

    return x_data


# Make sure each site is represented in the training set when selecting a subset of the training set 
開發者ID:parisots,項目名稱:population-gcn,代碼行數:28,代碼來源:ABIDEParser.py

示例12: __init__

# 需要導入模塊: from sklearn import feature_selection [as 別名]
# 或者: from sklearn.feature_selection import RFE [as 別名]
def __init__(self, estimator, n_features_to_select=None, step=1, verbose=0):
        self._hyperparams = {
            'estimator': estimator,
            'n_features_to_select': n_features_to_select,
            'step': step,
            'verbose': verbose}
        self._wrapped_model = SKLModel(**self._hyperparams) 
開發者ID:IBM,項目名稱:lale,代碼行數:9,代碼來源:rfe.py

示例13: feature_selection

# 需要導入模塊: from sklearn import feature_selection [as 別名]
# 或者: from sklearn.feature_selection import RFE [as 別名]
def feature_selection(x_train, y_train, x_test, y_test):
    print("Feature selection with LinearSVC")
    model = LinearSVC(C=0.1, penalty='l2')
    rfe = RFE(model, 5)
    best_features_model = rfe.fit(x_train, y_train)
    y_hat = best_features_model.predict(x_test)
    utils.print_statistics(y_test, y_hat) 
開發者ID:MirunaPislar,項目名稱:Sarcasm-Detection,代碼行數:9,代碼來源:classifiers.py

示例14: compute_ranks

# 需要導入模塊: from sklearn import feature_selection [as 別名]
# 或者: from sklearn.feature_selection import RFE [as 別名]
def compute_ranks(self):
        if self._algorithm == FeatureSelector.SELECT_K_BEST:
            scores = self._selector.scores_
            sorted_scores = sorted(scores, reverse=True)
            ranks = [sorted_scores.index(i) + 1 for i in scores]
        elif self._algorithm == FeatureSelector.SELECT_PERCENTILE:
            scores = self._selector.scores_
            sorted_scores = sorted(scores, reverse=True)
            ranks = [sorted_scores.index(i) + 1 for i in scores]
        elif self._algorithm == FeatureSelector.RECURSIVE_ELIMINATION:
            n_selected = self._selector.n_features_
            support = self._selector.support_
            ranking = self._selector.ranking_
            # RFE and RFECV do not provide feature scores. Instead, they
            # provide a list of features which have been selected (support)
            # and an ascending list indicating when each other feature was
            # eliminated. Use these two to construct feature ranks, though
            # acknowledge that RFE and RFECV do not actually distinguish between
            # the weights of selected features.
            ranks = [0]*len(support)
            selected_count = 0
            for i in range(len(ranking)):
                if support[i]:
                    # All selected features in ranking receive rank 1, so need
                    # to iterate through list and add incrementing values so
                    # that features ranked 1, 1, 1, become 1, 2, 3.
                    ranks[i] = ranking[i] + selected_count
                    selected_count += 1
                else:
                    # Even if there are 5 selected features, the 6th feature
                    # in ranking is given rank 2, so add (n_selected - 1).
                    ranks[i] = ranking[i] + (n_selected - 1)

        return ranks 
開發者ID:HealthRex,項目名稱:CDSS,代碼行數:36,代碼來源:FeatureSelector.py

示例15: _eliminate_recursively

# 需要導入模塊: from sklearn import feature_selection [as 別名]
# 或者: from sklearn.feature_selection import RFE [as 別名]
def _eliminate_recursively(self, k=None):
        if self._problem == FeatureSelector.CLASSIFICATION:
            estimator = RandomForestClassifier(random_state=self._random_state)
        else:
            estimator = LassoCV(random_state=self._random_state)
        # If k is not specified, then use RFECV to automatically decide on
        # optimal number of features. If specified, then use RFE.
        if k is None:
            self._selector = RFECV(estimator)
        else:
            self._selector = RFE(estimator, n_features_to_select=k, step=0.05) 
開發者ID:HealthRex,項目名稱:CDSS,代碼行數:13,代碼來源:FeatureSelector.py


注:本文中的sklearn.feature_selection.RFE屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。