當前位置: 首頁>>代碼示例>>Java>>正文


Java Core.normalize方法代碼示例

本文整理匯總了Java中org.opencv.core.Core.normalize方法的典型用法代碼示例。如果您正苦於以下問題:Java Core.normalize方法的具體用法?Java Core.normalize怎麽用?Java Core.normalize使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在org.opencv.core.Core的用法示例。


在下文中一共展示了Core.normalize方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: SimplestColorBalance

import org.opencv.core.Core; //導入方法依賴的package包/類
/**
 * Simplest Color Balance. Performs color balancing via histogram
 * normalization.
 *
 * @param img input color or gray scale image
 * @param percent controls the percentage of pixels to clip to white and black. (normally, choose 1~10)
 * @return Balanced image in CvType.CV_32F
 */
public static Mat SimplestColorBalance(Mat img, int percent) {
	if (percent <= 0)
		percent = 5;
	img.convertTo(img, CvType.CV_32F);
	List<Mat> channels = new ArrayList<>();
	int rows = img.rows(); // number of rows of image
	int cols = img.cols(); // number of columns of image
	int chnls = img.channels(); //  number of channels of image
	double halfPercent = percent / 200.0;
	if (chnls == 3) Core.split(img, channels);
	else channels.add(img);
	List<Mat> results = new ArrayList<>();
	for (int i = 0; i < chnls; i++) {
		// find the low and high precentile values (based on the input percentile)
		Mat flat = new Mat();
		channels.get(i).reshape(1, 1).copyTo(flat);
		Core.sort(flat, flat, Core.SORT_ASCENDING);
		double lowVal = flat.get(0, (int) Math.floor(flat.cols() * halfPercent))[0];
		double topVal = flat.get(0, (int) Math.ceil(flat.cols() * (1.0 - halfPercent)))[0];
		// saturate below the low percentile and above the high percentile
		Mat channel = channels.get(i);
		for (int m = 0; m < rows; m++) {
			for (int n = 0; n < cols; n++) {
				if (channel.get(m, n)[0] < lowVal) channel.put(m, n, lowVal);
				if (channel.get(m, n)[0] > topVal) channel.put(m, n, topVal);
			}
		}
		Core.normalize(channel, channel, 0.0, 255.0 / 2, Core.NORM_MINMAX);
		channel.convertTo(channel, CvType.CV_32F);
		results.add(channel);
	}
	Mat outval = new Mat();
	Core.merge(results, outval);
	return outval;
}
 
開發者ID:IsaacChanghau,項目名稱:OptimizedImageEnhance,代碼行數:44,代碼來源:Filters.java

示例2: norm_0_255

import org.opencv.core.Core; //導入方法依賴的package包/類
/**
 * 圖像歸一化
* @Title: norm_0_255 
* @Description: TODO(這裏用一句話描述這個方法的作用) 
* @param src
* @return
* Mat 
* @throws
 */
public static Mat norm_0_255(Mat src) {
	// 創建和返回一個歸一化後的圖像矩陣
	Mat dst = new Mat();
	switch(src.channels()) {
		case 1: Core.normalize(src, dst, 0, 255, Core.NORM_MINMAX, CvType.CV_8UC1); break;
		case 3: Core.normalize(src, dst, 0, 255, Core.NORM_MINMAX, CvType.CV_8UC3); break;
		default: src.copyTo(dst);break;
	}
	return dst;
}
 
開發者ID:IaHehe,項目名稱:classchecks,代碼行數:20,代碼來源:ImgprocessUtils.java

示例3: HarrisCorner

import org.opencv.core.Core; //導入方法依賴的package包/類
void HarrisCorner() {
    Mat grayMat = new Mat();
    Mat corners = new Mat();

    //Converting the image to grayscale
    Imgproc.cvtColor(originalMat, grayMat, Imgproc.COLOR_BGR2GRAY);

    Mat tempDst = new Mat();
    //finding contours
    Imgproc.cornerHarris(grayMat, tempDst, 2, 3, 0.04);

    //Normalizing harris corner's output
    Mat tempDstNorm = new Mat();
    Core.normalize(tempDst, tempDstNorm, 0, 255, Core.NORM_MINMAX);
    Core.convertScaleAbs(tempDstNorm, corners);

    //Drawing corners on a new image
    Random r = new Random();
    for (int i = 0; i < tempDstNorm.cols(); i++) {
        for (int j = 0; j < tempDstNorm.rows(); j++) {
            double[] value = tempDstNorm.get(j, i);
            if (value[0] > 150)
                Imgproc.circle(corners, new Point(i, j), 5, new Scalar(r.nextInt(255)), 2);
        }
    }

    //Converting Mat back to Bitmap
    Utils.matToBitmap(corners, currentBitmap);
    imageView.setImageBitmap(currentBitmap);
}
 
開發者ID:johnhany,項目名稱:MOAAP,代碼行數:31,代碼來源:MainActivity.java

示例4: enhance

import org.opencv.core.Core; //導入方法依賴的package包/類
public static Mat enhance(Mat image, int r, double eps, double eta, double lambda, double krnlRatio) {
	image.convertTo(image, CvType.CV_32F);
	// extract each color channel
	List<Mat> bgr = new ArrayList<>();
	Core.split(image, bgr);
	Mat bChannel = bgr.get(0);
	Mat gChannel = bgr.get(1);
	Mat rChannel = bgr.get(2);
	int m = rChannel.rows();
	int n = rChannel.cols();
	// Global Adaptation
	List<Mat> list = globalAdaptation(bChannel, gChannel, rChannel, m, n);
	Mat Lw = list.get(0);
	Mat Lg = list.get(1);
	// Local Adaptation
	Mat Hg = localAdaptation(Lg, m, n, r, eps, krnlRatio);
	Lg.convertTo(Lg, CvType.CV_32F);
	// process
	Mat alpha = new Mat(m, n, rChannel.type());
	Core.divide(Lg, new Scalar(Core.minMaxLoc(Lg).maxVal / eta), alpha);
	//Core.multiply(alpha, new Scalar(eta), alpha);
	Core.add(alpha, new Scalar(1.0), alpha);
	//alpha = adjustment(alpha, 1.25);
	Mat Lg_ = new Mat(m, n, rChannel.type());
	Core.add(Lg, new Scalar(1.0 / 255.0), Lg_);
	Core.log(Lg_, Lg_);
	double beta = Math.exp(Core.sumElems(Lg_).val[0] / (m * n)) * lambda;
	Mat Lout = new Mat(m, n, rChannel.type());
	Core.divide(Lg, Hg, Lout);
	Core.add(Lout, new Scalar(beta), Lout);
	Core.log(Lout, Lout);
	Core.normalize(alpha.mul(Lout), Lout, 0, 255, Core.NORM_MINMAX);
	Mat gain = obtainGain(Lout, Lw, m, n);
	// output
	Core.divide(rChannel.mul(gain), new Scalar(Core.minMaxLoc(rChannel).maxVal / 255.0), rChannel); // Red Channel
	Core.divide(gChannel.mul(gain), new Scalar(Core.minMaxLoc(gChannel).maxVal / 255.0), gChannel); // Green Channel
	Core.divide(bChannel.mul(gain), new Scalar(Core.minMaxLoc(bChannel).maxVal / 255.0), bChannel); // Blue Channel
	// merge three color channels to a image
	Mat outval = new Mat();
	Core.merge(new ArrayList<>(Arrays.asList(bChannel, gChannel, rChannel)), outval);
	outval.convertTo(outval, CvType.CV_8UC1);
	return outval;
}
 
開發者ID:IsaacChanghau,項目名稱:OptimizedImageEnhance,代碼行數:44,代碼來源:ALTMRetinex.java

示例5: SimplestColorBalance

import org.opencv.core.Core; //導入方法依賴的package包/類
/**
 * Simplest Color Balance. Performs color balancing via histogram
 * normalization.
 *
 * @param img
 *            input color or gray scale image
 * @param percent
 *            controls the percentage of pixels to clip to white and black.
 *            (normally, choose 1~10)
 * @return Balanced image in CvType.CV_32F
 */
public static Mat SimplestColorBalance(Mat img, int percent) {
	if (percent <= 0)
		percent = 5;
	img.convertTo(img, CvType.CV_32F);
	List<Mat> channels = new ArrayList<Mat>();
	int rows = img.rows(); // number of rows of image
	int cols = img.cols(); // number of columns of image
	int chnls = img.channels(); //  number of channels of image
	double halfPercent = percent / 200.0;
	if (chnls == 3) {
		Core.split(img, channels);
	} else {
		channels.add(img);
	}
	List<Mat> results = new ArrayList<Mat>();
	for (int i = 0; i < chnls; i++) {
		// find the low and high precentile values (based on the input percentile)
		Mat flat = new Mat();
		channels.get(i).reshape(1, 1).copyTo(flat);
		Core.sort(flat, flat, Core.SORT_ASCENDING);
		double lowVal = flat.get(0, (int) Math.floor(flat.cols() * halfPercent))[0];
		double topVal = flat.get(0, (int) Math.ceil(flat.cols() * (1.0 - halfPercent)))[0];
		// saturate below the low percentile and above the high percentile
		Mat channel = channels.get(i);
		for (int m = 0; m < rows; m++) {
			for (int n = 0; n < cols; n++) {
				if (channel.get(m, n)[0] < lowVal)
					channel.put(m, n, lowVal);
				if (channel.get(m, n)[0] > topVal)
					channel.put(m, n, topVal);
			}
		}
		Core.normalize(channel, channel, 0, 255, Core.NORM_MINMAX);
		channel.convertTo(channel, CvType.CV_32F);
		results.add(channel);
	}
	Mat outval = new Mat();
	Core.merge(results, outval);
	return outval;
}
 
開發者ID:IsaacChanghau,項目名稱:ImageEnhanceViaFusion,代碼行數:52,代碼來源:ColorBalance.java


注:本文中的org.opencv.core.Core.normalize方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。