當前位置: 首頁>>代碼示例>>Java>>正文


Java Core.merge方法代碼示例

本文整理匯總了Java中org.opencv.core.Core.merge方法的典型用法代碼示例。如果您正苦於以下問題:Java Core.merge方法的具體用法?Java Core.merge怎麽用?Java Core.merge使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在org.opencv.core.Core的用法示例。


在下文中一共展示了Core.merge方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: SimplestColorBalance

import org.opencv.core.Core; //導入方法依賴的package包/類
/**
 * Simplest Color Balance. Performs color balancing via histogram
 * normalization.
 *
 * @param img input color or gray scale image
 * @param percent controls the percentage of pixels to clip to white and black. (normally, choose 1~10)
 * @return Balanced image in CvType.CV_32F
 */
public static Mat SimplestColorBalance(Mat img, int percent) {
	if (percent <= 0)
		percent = 5;
	img.convertTo(img, CvType.CV_32F);
	List<Mat> channels = new ArrayList<>();
	int rows = img.rows(); // number of rows of image
	int cols = img.cols(); // number of columns of image
	int chnls = img.channels(); //  number of channels of image
	double halfPercent = percent / 200.0;
	if (chnls == 3) Core.split(img, channels);
	else channels.add(img);
	List<Mat> results = new ArrayList<>();
	for (int i = 0; i < chnls; i++) {
		// find the low and high precentile values (based on the input percentile)
		Mat flat = new Mat();
		channels.get(i).reshape(1, 1).copyTo(flat);
		Core.sort(flat, flat, Core.SORT_ASCENDING);
		double lowVal = flat.get(0, (int) Math.floor(flat.cols() * halfPercent))[0];
		double topVal = flat.get(0, (int) Math.ceil(flat.cols() * (1.0 - halfPercent)))[0];
		// saturate below the low percentile and above the high percentile
		Mat channel = channels.get(i);
		for (int m = 0; m < rows; m++) {
			for (int n = 0; n < cols; n++) {
				if (channel.get(m, n)[0] < lowVal) channel.put(m, n, lowVal);
				if (channel.get(m, n)[0] > topVal) channel.put(m, n, topVal);
			}
		}
		Core.normalize(channel, channel, 0.0, 255.0 / 2, Core.NORM_MINMAX);
		channel.convertTo(channel, CvType.CV_32F);
		results.add(channel);
	}
	Mat outval = new Mat();
	Core.merge(results, outval);
	return outval;
}
 
開發者ID:IsaacChanghau,項目名稱:OptimizedImageEnhance,代碼行數:44,代碼來源:Filters.java

示例2: enhance

import org.opencv.core.Core; //導入方法依賴的package包/類
public static Mat enhance(Mat image, int blkSize, int patchSize, double lambda, double eps, int krnlSize) {
	image.convertTo(image, CvType.CV_32F);
	// obtain air-light
	double[] airlight = AirlightEstimate.estimate(image, blkSize);
	// obtain coarse transmission map
	double fTrans = 0.5;
	Mat T = TransmissionEstimate.transEstimate(image, patchSize, airlight, lambda, fTrans);
	// refine the transmission map
	Mat gray = new Mat();
	Imgproc.cvtColor(image, gray, Imgproc.COLOR_RGB2GRAY);
	Core.divide(gray, new Scalar(255.0), gray);
	T = Filters.GuidedImageFilter(gray, T, krnlSize, eps);
	// dehaze
	List<Mat> bgr = new ArrayList<>();
	Core.split(image, bgr);
	Mat bChannel = dehaze(bgr.get(0), T, airlight[0]);
	//Core.normalize(bChannel, bChannel, 0, 255, Core.NORM_MINMAX);
	Mat gChannel = dehaze(bgr.get(1), T, airlight[1]);
	//Core.normalize(gChannel, gChannel, 0, 255, Core.NORM_MINMAX);
	Mat rChannel = dehaze(bgr.get(2), T, airlight[2]);
	//Core.normalize(rChannel, rChannel, 0, 255, Core.NORM_MINMAX);
	Mat dehazedImg = new Mat();
	Core.merge(new ArrayList<>(Arrays.asList(bChannel, gChannel, rChannel)), dehazedImg);
	return dehazedImg;
}
 
開發者ID:IsaacChanghau,項目名稱:OptimizedImageEnhance,代碼行數:26,代碼來源:OptimizedContrastEnhance.java

示例3: applyCLAHE

import org.opencv.core.Core; //導入方法依賴的package包/類
private static Mat[] applyCLAHE(Mat img, Mat L) {
	Mat[] result = new Mat[2];
	CLAHE clahe = Imgproc.createCLAHE();
	clahe.setClipLimit(2.0);
	Mat L2 = new Mat();
	clahe.apply(L, L2);
	Mat LabIm2 = new Mat();
	List<Mat> lab = new ArrayList<>();
	Core.split(img, lab);
	Core.merge(new ArrayList<>(Arrays.asList(L2, lab.get(1), lab.get(2))), LabIm2);
	Mat img2 = new Mat();
	Imgproc.cvtColor(LabIm2, img2, Imgproc.COLOR_Lab2BGR);
	result[0] = img2;
	result[1] = L2;
	return result;
}
 
開發者ID:IsaacChanghau,項目名稱:OptimizedImageEnhance,代碼行數:17,代碼來源:FusionEnhance.java

示例4: main

import org.opencv.core.Core; //導入方法依賴的package包/類
public static void main(String[] args) {
	String imgPath = "src/main/resources/dcp_images/flash/cave-flash.bmp";
	String guidedImgPath = "src/main/resources/dcp_images/flash/cave-noflash.bmp";
	Mat image = Imgcodecs.imread(imgPath, Imgcodecs.CV_LOAD_IMAGE_COLOR);
	new ImShow("image").showImage(image);
	image.convertTo(image, CvType.CV_32F);
	Mat guide = Imgcodecs.imread(guidedImgPath, Imgcodecs.CV_LOAD_IMAGE_COLOR);
	guide.convertTo(guide, CvType.CV_32F);
	List<Mat> img = new ArrayList<>();
	List<Mat> gid = new ArrayList<>();
	Core.split(image, img);
	Core.split(guide, gid);
	
	int r = 8;
	double eps = 0.02 * 0.02;
	Mat q_r = Filters.GuidedImageFilter(img.get(0), gid.get(0), r, eps);
	Mat q_g = Filters.GuidedImageFilter(img.get(1), gid.get(1), r, eps);
	Mat q_b = Filters.GuidedImageFilter(img.get(2), gid.get(2), r, eps);
	Mat q = new Mat();
	Core.merge(new ArrayList<>(Arrays.asList(q_r, q_g, q_b)), q);
	q.convertTo(q, CvType.CV_8UC1);
	new ImShow("q").showImage(q);
}
 
開發者ID:IsaacChanghau,項目名稱:OptimizedImageEnhance,代碼行數:24,代碼來源:GuidedFilterFlashExample.java

示例5: main

import org.opencv.core.Core; //導入方法依賴的package包/類
public static void main(String[] args) {
	String imgPath = "src/main/resources/dcp_images/enhancement/tulips.bmp";
	Mat image = Imgcodecs.imread(imgPath, Imgcodecs.CV_LOAD_IMAGE_COLOR);
	new ImShow("image").showImage(image);
	image.convertTo(image, CvType.CV_32F);
	List<Mat> img = new ArrayList<>();
	Core.split(image, img);
	int r = 16;
	double eps = 0.01;
	
	Mat q_r = Filters.GuidedImageFilter(img.get(0), img.get(0), r, eps);
	Mat q_g = Filters.GuidedImageFilter(img.get(1), img.get(1), r, eps);
	Mat q_b = Filters.GuidedImageFilter(img.get(2), img.get(2), r, eps);
	
	Mat q = new Mat();
	Core.merge(new ArrayList<>(Arrays.asList(q_r, q_g, q_b)), q);
	q.convertTo(q, CvType.CV_8UC1);
	new ImShow("q").showImage(q);
}
 
開發者ID:IsaacChanghau,項目名稱:OptimizedImageEnhance,代碼行數:20,代碼來源:GuidedFilterEnhanceExample.java

示例6: applyCLAHE

import org.opencv.core.Core; //導入方法依賴的package包/類
private static Mat[] applyCLAHE(Mat img, Mat L) {
	Mat[] result = new Mat[2];
	CLAHE clahe = Imgproc.createCLAHE();
	clahe.setClipLimit(2.0);
	Mat L2 = new Mat();
	clahe.apply(L, L2);
	Mat LabIm2 = new Mat();
	List<Mat> lab = new ArrayList<Mat>();
	Core.split(img, lab);
	Core.merge(new ArrayList<Mat>(Arrays.asList(L2, lab.get(1), lab.get(2))), LabIm2);
	Mat img2 = new Mat();
	Imgproc.cvtColor(LabIm2, img2, Imgproc.COLOR_Lab2BGR);
	result[0] = img2;
	result[1] = L2;
	return result;
}
 
開發者ID:IsaacChanghau,項目名稱:ImageEnhanceViaFusion,代碼行數:17,代碼來源:EnhanceFunc.java

示例7: enhanceEachChannel

import org.opencv.core.Core; //導入方法依賴的package包/類
@SuppressWarnings("unused")
public static Mat enhanceEachChannel(Mat image, int blkSize, int patchSize, double lambda, double eps, int krnlSize) {
	image.convertTo(image, CvType.CV_32F);
	// split image to three channels
	List<Mat> bgr = new ArrayList<>();
	Core.split(image, bgr);
	Mat bChannel = bgr.get(0);
	Mat gChannel = bgr.get(1);
	Mat rChannel = bgr.get(2);
	// obtain air-light
	double[] airlight = AirlightEstimate.estimate(image, blkSize);
	// obtain coarse transmission map and refine it for each channel
	double fTrans = 0.3;
	Mat T = TransmissionEstimate.transEstimateEachChannel(bChannel, patchSize, airlight[0], lambda, fTrans);
	Core.subtract(T, new Scalar(1.0), T);
	Core.multiply(T, new Scalar(-1.0), T);
	Mat Tb = Filters.GuidedImageFilter(bChannel, T, krnlSize, eps);
	T = TransmissionEstimate.transEstimateEachChannel(gChannel, patchSize, airlight[1], lambda, fTrans);
	Core.subtract(T, new Scalar(1.0), T);
	Core.multiply(T, new Scalar(-1.0), T);
	Mat Tg = Filters.GuidedImageFilter(gChannel, T, krnlSize, eps);
	T = TransmissionEstimate.transEstimateEachChannel(rChannel, patchSize, airlight[2], lambda, fTrans);
	Core.subtract(T, new Scalar(1.0), T);
	Core.multiply(T, new Scalar(-1.0), T);
	Mat Tr = Filters.GuidedImageFilter(rChannel, T, krnlSize, eps);
	// dehaze
	bChannel = dehaze(bChannel, Tb, airlight[0]);
	gChannel = dehaze(gChannel, Tg, airlight[1]);
	rChannel = dehaze(rChannel, Tr, airlight[2]);
	Mat outval = new Mat();
	Core.merge(new ArrayList<>(Arrays.asList(bChannel, gChannel, rChannel)), outval);
	return outval;
}
 
開發者ID:IsaacChanghau,項目名稱:OptimizedImageEnhance,代碼行數:34,代碼來源:OptimizedContrastEnhance.java

示例8: dehazeProcess

import org.opencv.core.Core; //導入方法依賴的package包/類
private static Mat dehazeProcess(Mat img, Mat trans, double[] airlight) {
	Mat balancedImg = Filters.SimplestColorBalance(img, 5);
	Mat bCnl = new Mat();
	Core.extractChannel(balancedImg, bCnl, 0);
	Mat gCnl = new Mat();
	Core.extractChannel(balancedImg, gCnl, 1);
	Mat rCnl = new Mat();
	Core.extractChannel(balancedImg, rCnl, 2);
	// get mean value
	double bMean = Core.mean(bCnl).val[0];
	double gMean = Core.mean(gCnl).val[0];
	double rMean = Core.mean(rCnl).val[0];
	// get transmission map for each channel
	Mat Tb = trans.clone();
	Core.multiply(Tb, new Scalar(Math.max(bMean, Math.max(gMean, rMean)) / bMean * 0.8), Tb);
	Mat Tg = trans.clone();
	Core.multiply(Tg, new Scalar(Math.max(bMean, Math.max(gMean, rMean)) / gMean * 0.9), Tg);
	Mat Tr = trans.clone();
	Core.multiply(Tr, new Scalar(Math.max(bMean, Math.max(gMean, rMean)) / rMean * 0.8), Tr);
	// dehaze by formula
	// blue channel
	Mat bChannel = new Mat();
	Core.subtract(bCnl, new Scalar(airlight[0]), bChannel);
	Core.divide(bChannel, Tb, bChannel);
	Core.add(bChannel, new Scalar(airlight[0]), bChannel);
	// green channel
	Mat gChannel = new Mat();
	Core.subtract(gCnl, new Scalar(airlight[1]), gChannel);
	Core.divide(gChannel, Tg, gChannel);
	Core.add(gChannel, new Scalar(airlight[1]), gChannel);
	// red channel
	Mat rChannel = new Mat();
	Core.subtract(rCnl, new Scalar(airlight[2]), rChannel);
	Core.divide(rChannel, Tr, rChannel);
	Core.add(rChannel, new Scalar(airlight[2]), rChannel);
	Mat dehazed = new Mat();
	Core.merge(new ArrayList<>(Arrays.asList(bChannel, gChannel, rChannel)), dehazed);
	return dehazed;
}
 
開發者ID:IsaacChanghau,項目名稱:OptimizedImageEnhance,代碼行數:40,代碼來源:RemoveBackScatter.java

示例9: enhance

import org.opencv.core.Core; //導入方法依賴的package包/類
public static Mat enhance(Mat image, int r, double eps, double eta, double lambda, double krnlRatio) {
	image.convertTo(image, CvType.CV_32F);
	// extract each color channel
	List<Mat> bgr = new ArrayList<>();
	Core.split(image, bgr);
	Mat bChannel = bgr.get(0);
	Mat gChannel = bgr.get(1);
	Mat rChannel = bgr.get(2);
	int m = rChannel.rows();
	int n = rChannel.cols();
	// Global Adaptation
	List<Mat> list = globalAdaptation(bChannel, gChannel, rChannel, m, n);
	Mat Lw = list.get(0);
	Mat Lg = list.get(1);
	// Local Adaptation
	Mat Hg = localAdaptation(Lg, m, n, r, eps, krnlRatio);
	Lg.convertTo(Lg, CvType.CV_32F);
	// process
	Mat alpha = new Mat(m, n, rChannel.type());
	Core.divide(Lg, new Scalar(Core.minMaxLoc(Lg).maxVal / eta), alpha);
	//Core.multiply(alpha, new Scalar(eta), alpha);
	Core.add(alpha, new Scalar(1.0), alpha);
	//alpha = adjustment(alpha, 1.25);
	Mat Lg_ = new Mat(m, n, rChannel.type());
	Core.add(Lg, new Scalar(1.0 / 255.0), Lg_);
	Core.log(Lg_, Lg_);
	double beta = Math.exp(Core.sumElems(Lg_).val[0] / (m * n)) * lambda;
	Mat Lout = new Mat(m, n, rChannel.type());
	Core.divide(Lg, Hg, Lout);
	Core.add(Lout, new Scalar(beta), Lout);
	Core.log(Lout, Lout);
	Core.normalize(alpha.mul(Lout), Lout, 0, 255, Core.NORM_MINMAX);
	Mat gain = obtainGain(Lout, Lw, m, n);
	// output
	Core.divide(rChannel.mul(gain), new Scalar(Core.minMaxLoc(rChannel).maxVal / 255.0), rChannel); // Red Channel
	Core.divide(gChannel.mul(gain), new Scalar(Core.minMaxLoc(gChannel).maxVal / 255.0), gChannel); // Green Channel
	Core.divide(bChannel.mul(gain), new Scalar(Core.minMaxLoc(bChannel).maxVal / 255.0), bChannel); // Blue Channel
	// merge three color channels to a image
	Mat outval = new Mat();
	Core.merge(new ArrayList<>(Arrays.asList(bChannel, gChannel, rChannel)), outval);
	outval.convertTo(outval, CvType.CV_8UC1);
	return outval;
}
 
開發者ID:IsaacChanghau,項目名稱:OptimizedImageEnhance,代碼行數:44,代碼來源:ALTMRetinex.java

示例10: enhance

import org.opencv.core.Core; //導入方法依賴的package包/類
public static Mat enhance(Mat image, double krnlRatio, double minAtmosLight, double eps) {
	image.convertTo(image, CvType.CV_32F);
	// extract each color channel
	List<Mat> rgb = new ArrayList<>();
	Core.split(image, rgb);
	Mat rChannel = rgb.get(0);
	Mat gChannel = rgb.get(1);
	Mat bChannel = rgb.get(2);
	int rows = rChannel.rows();
	int cols = rChannel.cols();
	// derive the dark channel from original image
	Mat dc = rChannel.clone();
	for (int i = 0; i < image.rows(); i++) {
		for (int j = 0; j < image.cols(); j++) {
			double min = Math.min(rChannel.get(i, j)[0], Math.min(gChannel.get(i, j)[0], bChannel.get(i, j)[0]));
			dc.put(i, j, min);
		}
	}
	// minimum filter
	int krnlSz = Double.valueOf(Math.max(Math.max(rows * krnlRatio, cols * krnlRatio), 3.0)).intValue();
	Mat kernel = Imgproc.getStructuringElement(Imgproc.MORPH_RECT, new Size(krnlSz, krnlSz), new Point(-1, -1));
	Imgproc.erode(dc, dc, kernel);
	// get coarse transmission map
	Mat t = dc.clone();
	Core.subtract(t, new Scalar(255.0), t);
	Core.multiply(t, new Scalar(-1.0), t);
	Core.divide(t, new Scalar(255.0), t);
	// obtain gray scale image
	Mat gray = new Mat();
	Imgproc.cvtColor(image, gray, Imgproc.COLOR_RGB2GRAY);
	Core.divide(gray, new Scalar(255.0), gray);
	// refine transmission map
	int r = krnlSz * 4;
	t = Filters.GuidedImageFilter(gray, t, r, eps);
	// get minimum atmospheric light
	minAtmosLight = Math.min(minAtmosLight, Core.minMaxLoc(dc).maxVal);
	// dehaze each color channel
	rChannel = dehaze(rChannel, t, minAtmosLight);
	gChannel = dehaze(gChannel, t, minAtmosLight);
	bChannel = dehaze(bChannel, t, minAtmosLight);
	// merge three color channels to a image
	Mat outval = new Mat();
	Core.merge(new ArrayList<>(Arrays.asList(rChannel, gChannel, bChannel)), outval);
	outval.convertTo(outval, CvType.CV_8UC1);
	return outval;
}
 
開發者ID:IsaacChanghau,項目名稱:OptimizedImageEnhance,代碼行數:47,代碼來源:DarkChannelPriorDehaze.java

示例11: main

import org.opencv.core.Core; //導入方法依賴的package包/類
public static void main(String[] args) {
	String imgPath = "images/5.jpg";
	Mat image = Imgcodecs.imread(imgPath, Imgcodecs.CV_LOAD_IMAGE_COLOR);
	new ImShow("original").showImage(image);
	// color balance
	Mat img1 = ColorBalance.SimplestColorBalance(image, 5);
	img1.convertTo(img1, CvType.CV_8UC1);
	// Perform sRGB to CIE Lab color space conversion
	Mat LabIm1 = new Mat();
	Imgproc.cvtColor(img1, LabIm1, Imgproc.COLOR_BGR2Lab);
	Mat L1 = new Mat();
	Core.extractChannel(LabIm1, L1, 0);
	// apply CLAHE
	Mat[] result = applyCLAHE(LabIm1, L1);
	Mat img2 = result[0];
	Mat L2 = result[1];
	// calculate normalized weight
	Mat w1 = calWeight(img1, L1);
	Mat w2 = calWeight(img2, L2);
	Mat sumW = new Mat();
	Core.add(w1, w2, sumW);
	Core.divide(w1, sumW, w1);
	Core.divide(w2, sumW, w2);
	// construct the gaussian pyramid for weight
	int level = 5;
	Mat[] weight1 = Pyramid.GaussianPyramid(w1, level);
	Mat[] weight2 = Pyramid.GaussianPyramid(w2, level);
	// construct the laplacian pyramid for input image channel
	img1.convertTo(img1, CvType.CV_32F);
	img2.convertTo(img2, CvType.CV_32F);
	List<Mat> bgr = new ArrayList<Mat>();
	Core.split(img1, bgr);
	Mat[] bCnl1 = Pyramid.LaplacianPyramid(bgr.get(0), level);
	Mat[] gCnl1 = Pyramid.LaplacianPyramid(bgr.get(1), level);
	Mat[] rCnl1 = Pyramid.LaplacianPyramid(bgr.get(2), level);
	bgr.clear();
	Core.split(img2, bgr);
	Mat[] bCnl2 = Pyramid.LaplacianPyramid(bgr.get(0), level);
	Mat[] gCnl2 = Pyramid.LaplacianPyramid(bgr.get(1), level);
	Mat[] rCnl2 = Pyramid.LaplacianPyramid(bgr.get(2), level);
	// fusion process
	Mat[] bCnl = new Mat[level];
	Mat[] gCnl = new Mat[level];
	Mat[] rCnl = new Mat[level];
	for (int i = 0; i < level; i++) {
		Mat cn = new Mat();
		Core.add(bCnl1[i].mul(weight1[i]), bCnl2[i].mul(weight2[i]), cn);
		bCnl[i] = cn.clone();
		Core.add(gCnl1[i].mul(weight1[i]), gCnl2[i].mul(weight2[i]), cn);
		gCnl[i] = cn.clone();
		Core.add(rCnl1[i].mul(weight1[i]), rCnl2[i].mul(weight2[i]), cn);
		rCnl[i] = cn.clone();
	}
	// reconstruct & output
	Mat bChannel = Pyramid.PyramidReconstruct(bCnl);
	Mat gChannel = Pyramid.PyramidReconstruct(gCnl);
	Mat rChannel = Pyramid.PyramidReconstruct(rCnl);
	Mat fusion = new Mat();
	Core.merge(new ArrayList<Mat>(Arrays.asList(bChannel, gChannel, rChannel)), fusion);
	fusion.convertTo(fusion, CvType.CV_8UC1);
	new ImShow("fusion").showImage(fusion);
}
 
開發者ID:IsaacChanghau,項目名稱:ImageEnhanceViaFusion,代碼行數:63,代碼來源:EnhanceFunc.java

示例12: SimplestColorBalance

import org.opencv.core.Core; //導入方法依賴的package包/類
/**
 * Simplest Color Balance. Performs color balancing via histogram
 * normalization.
 *
 * @param img
 *            input color or gray scale image
 * @param percent
 *            controls the percentage of pixels to clip to white and black.
 *            (normally, choose 1~10)
 * @return Balanced image in CvType.CV_32F
 */
public static Mat SimplestColorBalance(Mat img, int percent) {
	if (percent <= 0)
		percent = 5;
	img.convertTo(img, CvType.CV_32F);
	List<Mat> channels = new ArrayList<Mat>();
	int rows = img.rows(); // number of rows of image
	int cols = img.cols(); // number of columns of image
	int chnls = img.channels(); //  number of channels of image
	double halfPercent = percent / 200.0;
	if (chnls == 3) {
		Core.split(img, channels);
	} else {
		channels.add(img);
	}
	List<Mat> results = new ArrayList<Mat>();
	for (int i = 0; i < chnls; i++) {
		// find the low and high precentile values (based on the input percentile)
		Mat flat = new Mat();
		channels.get(i).reshape(1, 1).copyTo(flat);
		Core.sort(flat, flat, Core.SORT_ASCENDING);
		double lowVal = flat.get(0, (int) Math.floor(flat.cols() * halfPercent))[0];
		double topVal = flat.get(0, (int) Math.ceil(flat.cols() * (1.0 - halfPercent)))[0];
		// saturate below the low percentile and above the high percentile
		Mat channel = channels.get(i);
		for (int m = 0; m < rows; m++) {
			for (int n = 0; n < cols; n++) {
				if (channel.get(m, n)[0] < lowVal)
					channel.put(m, n, lowVal);
				if (channel.get(m, n)[0] > topVal)
					channel.put(m, n, topVal);
			}
		}
		Core.normalize(channel, channel, 0, 255, Core.NORM_MINMAX);
		channel.convertTo(channel, CvType.CV_32F);
		results.add(channel);
	}
	Mat outval = new Mat();
	Core.merge(results, outval);
	return outval;
}
 
開發者ID:IsaacChanghau,項目名稱:ImageEnhanceViaFusion,代碼行數:52,代碼來源:ColorBalance.java


注:本文中的org.opencv.core.Core.merge方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。