本文整理匯總了Java中org.opencv.core.Core.merge方法的典型用法代碼示例。如果您正苦於以下問題:Java Core.merge方法的具體用法?Java Core.merge怎麽用?Java Core.merge使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類org.opencv.core.Core
的用法示例。
在下文中一共展示了Core.merge方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: SimplestColorBalance
import org.opencv.core.Core; //導入方法依賴的package包/類
/**
* Simplest Color Balance. Performs color balancing via histogram
* normalization.
*
* @param img input color or gray scale image
* @param percent controls the percentage of pixels to clip to white and black. (normally, choose 1~10)
* @return Balanced image in CvType.CV_32F
*/
public static Mat SimplestColorBalance(Mat img, int percent) {
if (percent <= 0)
percent = 5;
img.convertTo(img, CvType.CV_32F);
List<Mat> channels = new ArrayList<>();
int rows = img.rows(); // number of rows of image
int cols = img.cols(); // number of columns of image
int chnls = img.channels(); // number of channels of image
double halfPercent = percent / 200.0;
if (chnls == 3) Core.split(img, channels);
else channels.add(img);
List<Mat> results = new ArrayList<>();
for (int i = 0; i < chnls; i++) {
// find the low and high precentile values (based on the input percentile)
Mat flat = new Mat();
channels.get(i).reshape(1, 1).copyTo(flat);
Core.sort(flat, flat, Core.SORT_ASCENDING);
double lowVal = flat.get(0, (int) Math.floor(flat.cols() * halfPercent))[0];
double topVal = flat.get(0, (int) Math.ceil(flat.cols() * (1.0 - halfPercent)))[0];
// saturate below the low percentile and above the high percentile
Mat channel = channels.get(i);
for (int m = 0; m < rows; m++) {
for (int n = 0; n < cols; n++) {
if (channel.get(m, n)[0] < lowVal) channel.put(m, n, lowVal);
if (channel.get(m, n)[0] > topVal) channel.put(m, n, topVal);
}
}
Core.normalize(channel, channel, 0.0, 255.0 / 2, Core.NORM_MINMAX);
channel.convertTo(channel, CvType.CV_32F);
results.add(channel);
}
Mat outval = new Mat();
Core.merge(results, outval);
return outval;
}
示例2: enhance
import org.opencv.core.Core; //導入方法依賴的package包/類
public static Mat enhance(Mat image, int blkSize, int patchSize, double lambda, double eps, int krnlSize) {
image.convertTo(image, CvType.CV_32F);
// obtain air-light
double[] airlight = AirlightEstimate.estimate(image, blkSize);
// obtain coarse transmission map
double fTrans = 0.5;
Mat T = TransmissionEstimate.transEstimate(image, patchSize, airlight, lambda, fTrans);
// refine the transmission map
Mat gray = new Mat();
Imgproc.cvtColor(image, gray, Imgproc.COLOR_RGB2GRAY);
Core.divide(gray, new Scalar(255.0), gray);
T = Filters.GuidedImageFilter(gray, T, krnlSize, eps);
// dehaze
List<Mat> bgr = new ArrayList<>();
Core.split(image, bgr);
Mat bChannel = dehaze(bgr.get(0), T, airlight[0]);
//Core.normalize(bChannel, bChannel, 0, 255, Core.NORM_MINMAX);
Mat gChannel = dehaze(bgr.get(1), T, airlight[1]);
//Core.normalize(gChannel, gChannel, 0, 255, Core.NORM_MINMAX);
Mat rChannel = dehaze(bgr.get(2), T, airlight[2]);
//Core.normalize(rChannel, rChannel, 0, 255, Core.NORM_MINMAX);
Mat dehazedImg = new Mat();
Core.merge(new ArrayList<>(Arrays.asList(bChannel, gChannel, rChannel)), dehazedImg);
return dehazedImg;
}
示例3: applyCLAHE
import org.opencv.core.Core; //導入方法依賴的package包/類
private static Mat[] applyCLAHE(Mat img, Mat L) {
Mat[] result = new Mat[2];
CLAHE clahe = Imgproc.createCLAHE();
clahe.setClipLimit(2.0);
Mat L2 = new Mat();
clahe.apply(L, L2);
Mat LabIm2 = new Mat();
List<Mat> lab = new ArrayList<>();
Core.split(img, lab);
Core.merge(new ArrayList<>(Arrays.asList(L2, lab.get(1), lab.get(2))), LabIm2);
Mat img2 = new Mat();
Imgproc.cvtColor(LabIm2, img2, Imgproc.COLOR_Lab2BGR);
result[0] = img2;
result[1] = L2;
return result;
}
示例4: main
import org.opencv.core.Core; //導入方法依賴的package包/類
public static void main(String[] args) {
String imgPath = "src/main/resources/dcp_images/flash/cave-flash.bmp";
String guidedImgPath = "src/main/resources/dcp_images/flash/cave-noflash.bmp";
Mat image = Imgcodecs.imread(imgPath, Imgcodecs.CV_LOAD_IMAGE_COLOR);
new ImShow("image").showImage(image);
image.convertTo(image, CvType.CV_32F);
Mat guide = Imgcodecs.imread(guidedImgPath, Imgcodecs.CV_LOAD_IMAGE_COLOR);
guide.convertTo(guide, CvType.CV_32F);
List<Mat> img = new ArrayList<>();
List<Mat> gid = new ArrayList<>();
Core.split(image, img);
Core.split(guide, gid);
int r = 8;
double eps = 0.02 * 0.02;
Mat q_r = Filters.GuidedImageFilter(img.get(0), gid.get(0), r, eps);
Mat q_g = Filters.GuidedImageFilter(img.get(1), gid.get(1), r, eps);
Mat q_b = Filters.GuidedImageFilter(img.get(2), gid.get(2), r, eps);
Mat q = new Mat();
Core.merge(new ArrayList<>(Arrays.asList(q_r, q_g, q_b)), q);
q.convertTo(q, CvType.CV_8UC1);
new ImShow("q").showImage(q);
}
示例5: main
import org.opencv.core.Core; //導入方法依賴的package包/類
public static void main(String[] args) {
String imgPath = "src/main/resources/dcp_images/enhancement/tulips.bmp";
Mat image = Imgcodecs.imread(imgPath, Imgcodecs.CV_LOAD_IMAGE_COLOR);
new ImShow("image").showImage(image);
image.convertTo(image, CvType.CV_32F);
List<Mat> img = new ArrayList<>();
Core.split(image, img);
int r = 16;
double eps = 0.01;
Mat q_r = Filters.GuidedImageFilter(img.get(0), img.get(0), r, eps);
Mat q_g = Filters.GuidedImageFilter(img.get(1), img.get(1), r, eps);
Mat q_b = Filters.GuidedImageFilter(img.get(2), img.get(2), r, eps);
Mat q = new Mat();
Core.merge(new ArrayList<>(Arrays.asList(q_r, q_g, q_b)), q);
q.convertTo(q, CvType.CV_8UC1);
new ImShow("q").showImage(q);
}
示例6: applyCLAHE
import org.opencv.core.Core; //導入方法依賴的package包/類
private static Mat[] applyCLAHE(Mat img, Mat L) {
Mat[] result = new Mat[2];
CLAHE clahe = Imgproc.createCLAHE();
clahe.setClipLimit(2.0);
Mat L2 = new Mat();
clahe.apply(L, L2);
Mat LabIm2 = new Mat();
List<Mat> lab = new ArrayList<Mat>();
Core.split(img, lab);
Core.merge(new ArrayList<Mat>(Arrays.asList(L2, lab.get(1), lab.get(2))), LabIm2);
Mat img2 = new Mat();
Imgproc.cvtColor(LabIm2, img2, Imgproc.COLOR_Lab2BGR);
result[0] = img2;
result[1] = L2;
return result;
}
示例7: enhanceEachChannel
import org.opencv.core.Core; //導入方法依賴的package包/類
@SuppressWarnings("unused")
public static Mat enhanceEachChannel(Mat image, int blkSize, int patchSize, double lambda, double eps, int krnlSize) {
image.convertTo(image, CvType.CV_32F);
// split image to three channels
List<Mat> bgr = new ArrayList<>();
Core.split(image, bgr);
Mat bChannel = bgr.get(0);
Mat gChannel = bgr.get(1);
Mat rChannel = bgr.get(2);
// obtain air-light
double[] airlight = AirlightEstimate.estimate(image, blkSize);
// obtain coarse transmission map and refine it for each channel
double fTrans = 0.3;
Mat T = TransmissionEstimate.transEstimateEachChannel(bChannel, patchSize, airlight[0], lambda, fTrans);
Core.subtract(T, new Scalar(1.0), T);
Core.multiply(T, new Scalar(-1.0), T);
Mat Tb = Filters.GuidedImageFilter(bChannel, T, krnlSize, eps);
T = TransmissionEstimate.transEstimateEachChannel(gChannel, patchSize, airlight[1], lambda, fTrans);
Core.subtract(T, new Scalar(1.0), T);
Core.multiply(T, new Scalar(-1.0), T);
Mat Tg = Filters.GuidedImageFilter(gChannel, T, krnlSize, eps);
T = TransmissionEstimate.transEstimateEachChannel(rChannel, patchSize, airlight[2], lambda, fTrans);
Core.subtract(T, new Scalar(1.0), T);
Core.multiply(T, new Scalar(-1.0), T);
Mat Tr = Filters.GuidedImageFilter(rChannel, T, krnlSize, eps);
// dehaze
bChannel = dehaze(bChannel, Tb, airlight[0]);
gChannel = dehaze(gChannel, Tg, airlight[1]);
rChannel = dehaze(rChannel, Tr, airlight[2]);
Mat outval = new Mat();
Core.merge(new ArrayList<>(Arrays.asList(bChannel, gChannel, rChannel)), outval);
return outval;
}
示例8: dehazeProcess
import org.opencv.core.Core; //導入方法依賴的package包/類
private static Mat dehazeProcess(Mat img, Mat trans, double[] airlight) {
Mat balancedImg = Filters.SimplestColorBalance(img, 5);
Mat bCnl = new Mat();
Core.extractChannel(balancedImg, bCnl, 0);
Mat gCnl = new Mat();
Core.extractChannel(balancedImg, gCnl, 1);
Mat rCnl = new Mat();
Core.extractChannel(balancedImg, rCnl, 2);
// get mean value
double bMean = Core.mean(bCnl).val[0];
double gMean = Core.mean(gCnl).val[0];
double rMean = Core.mean(rCnl).val[0];
// get transmission map for each channel
Mat Tb = trans.clone();
Core.multiply(Tb, new Scalar(Math.max(bMean, Math.max(gMean, rMean)) / bMean * 0.8), Tb);
Mat Tg = trans.clone();
Core.multiply(Tg, new Scalar(Math.max(bMean, Math.max(gMean, rMean)) / gMean * 0.9), Tg);
Mat Tr = trans.clone();
Core.multiply(Tr, new Scalar(Math.max(bMean, Math.max(gMean, rMean)) / rMean * 0.8), Tr);
// dehaze by formula
// blue channel
Mat bChannel = new Mat();
Core.subtract(bCnl, new Scalar(airlight[0]), bChannel);
Core.divide(bChannel, Tb, bChannel);
Core.add(bChannel, new Scalar(airlight[0]), bChannel);
// green channel
Mat gChannel = new Mat();
Core.subtract(gCnl, new Scalar(airlight[1]), gChannel);
Core.divide(gChannel, Tg, gChannel);
Core.add(gChannel, new Scalar(airlight[1]), gChannel);
// red channel
Mat rChannel = new Mat();
Core.subtract(rCnl, new Scalar(airlight[2]), rChannel);
Core.divide(rChannel, Tr, rChannel);
Core.add(rChannel, new Scalar(airlight[2]), rChannel);
Mat dehazed = new Mat();
Core.merge(new ArrayList<>(Arrays.asList(bChannel, gChannel, rChannel)), dehazed);
return dehazed;
}
示例9: enhance
import org.opencv.core.Core; //導入方法依賴的package包/類
public static Mat enhance(Mat image, int r, double eps, double eta, double lambda, double krnlRatio) {
image.convertTo(image, CvType.CV_32F);
// extract each color channel
List<Mat> bgr = new ArrayList<>();
Core.split(image, bgr);
Mat bChannel = bgr.get(0);
Mat gChannel = bgr.get(1);
Mat rChannel = bgr.get(2);
int m = rChannel.rows();
int n = rChannel.cols();
// Global Adaptation
List<Mat> list = globalAdaptation(bChannel, gChannel, rChannel, m, n);
Mat Lw = list.get(0);
Mat Lg = list.get(1);
// Local Adaptation
Mat Hg = localAdaptation(Lg, m, n, r, eps, krnlRatio);
Lg.convertTo(Lg, CvType.CV_32F);
// process
Mat alpha = new Mat(m, n, rChannel.type());
Core.divide(Lg, new Scalar(Core.minMaxLoc(Lg).maxVal / eta), alpha);
//Core.multiply(alpha, new Scalar(eta), alpha);
Core.add(alpha, new Scalar(1.0), alpha);
//alpha = adjustment(alpha, 1.25);
Mat Lg_ = new Mat(m, n, rChannel.type());
Core.add(Lg, new Scalar(1.0 / 255.0), Lg_);
Core.log(Lg_, Lg_);
double beta = Math.exp(Core.sumElems(Lg_).val[0] / (m * n)) * lambda;
Mat Lout = new Mat(m, n, rChannel.type());
Core.divide(Lg, Hg, Lout);
Core.add(Lout, new Scalar(beta), Lout);
Core.log(Lout, Lout);
Core.normalize(alpha.mul(Lout), Lout, 0, 255, Core.NORM_MINMAX);
Mat gain = obtainGain(Lout, Lw, m, n);
// output
Core.divide(rChannel.mul(gain), new Scalar(Core.minMaxLoc(rChannel).maxVal / 255.0), rChannel); // Red Channel
Core.divide(gChannel.mul(gain), new Scalar(Core.minMaxLoc(gChannel).maxVal / 255.0), gChannel); // Green Channel
Core.divide(bChannel.mul(gain), new Scalar(Core.minMaxLoc(bChannel).maxVal / 255.0), bChannel); // Blue Channel
// merge three color channels to a image
Mat outval = new Mat();
Core.merge(new ArrayList<>(Arrays.asList(bChannel, gChannel, rChannel)), outval);
outval.convertTo(outval, CvType.CV_8UC1);
return outval;
}
示例10: enhance
import org.opencv.core.Core; //導入方法依賴的package包/類
public static Mat enhance(Mat image, double krnlRatio, double minAtmosLight, double eps) {
image.convertTo(image, CvType.CV_32F);
// extract each color channel
List<Mat> rgb = new ArrayList<>();
Core.split(image, rgb);
Mat rChannel = rgb.get(0);
Mat gChannel = rgb.get(1);
Mat bChannel = rgb.get(2);
int rows = rChannel.rows();
int cols = rChannel.cols();
// derive the dark channel from original image
Mat dc = rChannel.clone();
for (int i = 0; i < image.rows(); i++) {
for (int j = 0; j < image.cols(); j++) {
double min = Math.min(rChannel.get(i, j)[0], Math.min(gChannel.get(i, j)[0], bChannel.get(i, j)[0]));
dc.put(i, j, min);
}
}
// minimum filter
int krnlSz = Double.valueOf(Math.max(Math.max(rows * krnlRatio, cols * krnlRatio), 3.0)).intValue();
Mat kernel = Imgproc.getStructuringElement(Imgproc.MORPH_RECT, new Size(krnlSz, krnlSz), new Point(-1, -1));
Imgproc.erode(dc, dc, kernel);
// get coarse transmission map
Mat t = dc.clone();
Core.subtract(t, new Scalar(255.0), t);
Core.multiply(t, new Scalar(-1.0), t);
Core.divide(t, new Scalar(255.0), t);
// obtain gray scale image
Mat gray = new Mat();
Imgproc.cvtColor(image, gray, Imgproc.COLOR_RGB2GRAY);
Core.divide(gray, new Scalar(255.0), gray);
// refine transmission map
int r = krnlSz * 4;
t = Filters.GuidedImageFilter(gray, t, r, eps);
// get minimum atmospheric light
minAtmosLight = Math.min(minAtmosLight, Core.minMaxLoc(dc).maxVal);
// dehaze each color channel
rChannel = dehaze(rChannel, t, minAtmosLight);
gChannel = dehaze(gChannel, t, minAtmosLight);
bChannel = dehaze(bChannel, t, minAtmosLight);
// merge three color channels to a image
Mat outval = new Mat();
Core.merge(new ArrayList<>(Arrays.asList(rChannel, gChannel, bChannel)), outval);
outval.convertTo(outval, CvType.CV_8UC1);
return outval;
}
示例11: main
import org.opencv.core.Core; //導入方法依賴的package包/類
public static void main(String[] args) {
String imgPath = "images/5.jpg";
Mat image = Imgcodecs.imread(imgPath, Imgcodecs.CV_LOAD_IMAGE_COLOR);
new ImShow("original").showImage(image);
// color balance
Mat img1 = ColorBalance.SimplestColorBalance(image, 5);
img1.convertTo(img1, CvType.CV_8UC1);
// Perform sRGB to CIE Lab color space conversion
Mat LabIm1 = new Mat();
Imgproc.cvtColor(img1, LabIm1, Imgproc.COLOR_BGR2Lab);
Mat L1 = new Mat();
Core.extractChannel(LabIm1, L1, 0);
// apply CLAHE
Mat[] result = applyCLAHE(LabIm1, L1);
Mat img2 = result[0];
Mat L2 = result[1];
// calculate normalized weight
Mat w1 = calWeight(img1, L1);
Mat w2 = calWeight(img2, L2);
Mat sumW = new Mat();
Core.add(w1, w2, sumW);
Core.divide(w1, sumW, w1);
Core.divide(w2, sumW, w2);
// construct the gaussian pyramid for weight
int level = 5;
Mat[] weight1 = Pyramid.GaussianPyramid(w1, level);
Mat[] weight2 = Pyramid.GaussianPyramid(w2, level);
// construct the laplacian pyramid for input image channel
img1.convertTo(img1, CvType.CV_32F);
img2.convertTo(img2, CvType.CV_32F);
List<Mat> bgr = new ArrayList<Mat>();
Core.split(img1, bgr);
Mat[] bCnl1 = Pyramid.LaplacianPyramid(bgr.get(0), level);
Mat[] gCnl1 = Pyramid.LaplacianPyramid(bgr.get(1), level);
Mat[] rCnl1 = Pyramid.LaplacianPyramid(bgr.get(2), level);
bgr.clear();
Core.split(img2, bgr);
Mat[] bCnl2 = Pyramid.LaplacianPyramid(bgr.get(0), level);
Mat[] gCnl2 = Pyramid.LaplacianPyramid(bgr.get(1), level);
Mat[] rCnl2 = Pyramid.LaplacianPyramid(bgr.get(2), level);
// fusion process
Mat[] bCnl = new Mat[level];
Mat[] gCnl = new Mat[level];
Mat[] rCnl = new Mat[level];
for (int i = 0; i < level; i++) {
Mat cn = new Mat();
Core.add(bCnl1[i].mul(weight1[i]), bCnl2[i].mul(weight2[i]), cn);
bCnl[i] = cn.clone();
Core.add(gCnl1[i].mul(weight1[i]), gCnl2[i].mul(weight2[i]), cn);
gCnl[i] = cn.clone();
Core.add(rCnl1[i].mul(weight1[i]), rCnl2[i].mul(weight2[i]), cn);
rCnl[i] = cn.clone();
}
// reconstruct & output
Mat bChannel = Pyramid.PyramidReconstruct(bCnl);
Mat gChannel = Pyramid.PyramidReconstruct(gCnl);
Mat rChannel = Pyramid.PyramidReconstruct(rCnl);
Mat fusion = new Mat();
Core.merge(new ArrayList<Mat>(Arrays.asList(bChannel, gChannel, rChannel)), fusion);
fusion.convertTo(fusion, CvType.CV_8UC1);
new ImShow("fusion").showImage(fusion);
}
示例12: SimplestColorBalance
import org.opencv.core.Core; //導入方法依賴的package包/類
/**
* Simplest Color Balance. Performs color balancing via histogram
* normalization.
*
* @param img
* input color or gray scale image
* @param percent
* controls the percentage of pixels to clip to white and black.
* (normally, choose 1~10)
* @return Balanced image in CvType.CV_32F
*/
public static Mat SimplestColorBalance(Mat img, int percent) {
if (percent <= 0)
percent = 5;
img.convertTo(img, CvType.CV_32F);
List<Mat> channels = new ArrayList<Mat>();
int rows = img.rows(); // number of rows of image
int cols = img.cols(); // number of columns of image
int chnls = img.channels(); // number of channels of image
double halfPercent = percent / 200.0;
if (chnls == 3) {
Core.split(img, channels);
} else {
channels.add(img);
}
List<Mat> results = new ArrayList<Mat>();
for (int i = 0; i < chnls; i++) {
// find the low and high precentile values (based on the input percentile)
Mat flat = new Mat();
channels.get(i).reshape(1, 1).copyTo(flat);
Core.sort(flat, flat, Core.SORT_ASCENDING);
double lowVal = flat.get(0, (int) Math.floor(flat.cols() * halfPercent))[0];
double topVal = flat.get(0, (int) Math.ceil(flat.cols() * (1.0 - halfPercent)))[0];
// saturate below the low percentile and above the high percentile
Mat channel = channels.get(i);
for (int m = 0; m < rows; m++) {
for (int n = 0; n < cols; n++) {
if (channel.get(m, n)[0] < lowVal)
channel.put(m, n, lowVal);
if (channel.get(m, n)[0] > topVal)
channel.put(m, n, topVal);
}
}
Core.normalize(channel, channel, 0, 255, Core.NORM_MINMAX);
channel.convertTo(channel, CvType.CV_32F);
results.add(channel);
}
Mat outval = new Mat();
Core.merge(results, outval);
return outval;
}