當前位置: 首頁>>代碼示例>>Java>>正文


Java INDArray.putRow方法代碼示例

本文整理匯總了Java中org.nd4j.linalg.api.ndarray.INDArray.putRow方法的典型用法代碼示例。如果您正苦於以下問題:Java INDArray.putRow方法的具體用法?Java INDArray.putRow怎麽用?Java INDArray.putRow使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在org.nd4j.linalg.api.ndarray.INDArray的用法示例。


在下文中一共展示了INDArray.putRow方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: getPar2HierVector

import org.nd4j.linalg.api.ndarray.INDArray; //導入方法依賴的package包/類
/**
 * base case: on a leaf hv = pv
 * on a non-leaf node with n children: hv = pv + k centroids of the n hv
 */
private static INDArray getPar2HierVector(WeightLookupTable<VocabWord> lookupTable, PatriciaTrie<String> trie, String node,
                                          int k, Map<String, INDArray> hvs, Method method) {
  if (hvs.containsKey(node)) {
    return hvs.get(node);
  }
  INDArray hv = lookupTable.vector(node);
  String[] split = node.split(REGEX);
  Collection<String> descendants = new HashSet<>();
  if (split.length == 2) {
    String separator = ".";
    String prefix = node.substring(0, node.indexOf(split[1])) + separator;

    SortedMap<String, String> sortedMap = trie.prefixMap(prefix);

    for (Map.Entry<String, String> entry : sortedMap.entrySet()) {
      if (prefix.lastIndexOf(separator) == entry.getKey().lastIndexOf(separator)) {
        descendants.add(entry.getValue());
      }
    }
  } else {
    descendants = Collections.emptyList();
  }
  if (descendants.size() == 0) {
    // just the pv
    hvs.put(node, hv);
    return hv;
  } else {
    INDArray chvs = Nd4j.zeros(descendants.size(), hv.columns());
    int i = 0;
    for (String desc : descendants) {
      // child hierarchical vector
      INDArray chv = getPar2HierVector(lookupTable, trie, desc, k, hvs, method);
      chvs.putRow(i, chv);
      i++;
    }

    double[][] centroids;
    if (chvs.rows() > k) {
      centroids = Par2HierUtils.getTruncatedVT(chvs, k);
    } else if (chvs.rows() == 1) {
      centroids = Par2HierUtils.getDoubles(chvs.getRow(0));
    } else {
      centroids = Par2HierUtils.getTruncatedVT(chvs, 1);
    }
    switch (method) {
      case CLUSTER:
        INDArray matrix = Nd4j.zeros(centroids.length + 1, hv.columns());
        matrix.putRow(0, hv);
        for (int c = 0; c < centroids.length; c++) {
          matrix.putRow(c + 1, Nd4j.create(centroids[c]));
        }
        hv = Nd4j.create(Par2HierUtils.getTruncatedVT(matrix, 1));
        break;
      case SUM:
        for (double[] centroid : centroids) {
          hv.addi(Nd4j.create(centroid));
        }
        break;
    }

    hvs.put(node, hv);
    return hv;
  }
}
 
開發者ID:tteofili,項目名稱:par2hier,代碼行數:69,代碼來源:Par2HierUtils.java

示例2: main

import org.nd4j.linalg.api.ndarray.INDArray; //導入方法依賴的package包/類
public static void main(String[] args) {
	final Random rng = new Random(1234); // seed random
	// Declare variables and constants
	final int patterns = 2; // number of classes, nOut
	final int trainSetSize = 4;
	final int testSetSize = 4;
	final int nIn = 2;

	/*
	 * Training data for demo
	 * class 1 : [0, 0], [1, 1] for negative class
	 * class 2 : [0, 1], [1, 0] for positive class
	 */
	INDArray trainSet = Nd4j.create(new double[] {0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0}, new int[] {trainSetSize, nIn});
	INDArray trainLabel = Nd4j.create(new double[] {0, 1, 1, 0, 1, 0, 0, 1}, new int[] {trainSetSize, patterns});
	INDArray testSet = Nd4j.create(new double[] {0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0}, new int[] {testSetSize, nIn});
	INDArray testLabel = Nd4j.create(new double[] {0, 1, 1, 0, 1, 0, 0, 1}, new int[] {testSetSize, patterns});

	final int epochs = 2000;
	double learningRate = 0.2;
	int minibatchSize = 1; //  set 1 for on-line training
	int minibatchNumber = trainSetSize / minibatchSize;

	List<INDArray> train_X_minibatch = new ArrayList<>();
	List<INDArray> train_T_minibatch = new ArrayList<>();
	List<Integer> minibatchIndex = new ArrayList<>();
	for (int i = 0; i < trainSetSize; i++) minibatchIndex.add(i);
	Collections.shuffle(minibatchIndex, rng);

	// create minibatches
	for (int i = 0; i < minibatchNumber; i++) {
		INDArray tmpX = Nd4j.create(new double[minibatchSize * nIn], new int[] {minibatchSize, nIn});
		INDArray tmpT = Nd4j.create(new double[minibatchSize * patterns], new int[] {minibatchSize, patterns});
		for (int j = 0; j < minibatchSize; j++) {
			tmpX.putRow(j, trainSet.getRow(minibatchIndex.get(i * minibatchSize + j)));
			tmpT.putRow(j, trainLabel.getRow(minibatchIndex.get(i * minibatchSize + j)));
		}
		train_X_minibatch.add(tmpX);
		train_T_minibatch.add(tmpT);
	}

	// Build Logistic Regression model
	OutputLayer classifier = new OutputLayer(nIn, patterns, WeightInit.ZERO, null, Activation.Softmax);

	// train
	for (int epoch = 0; epoch < epochs; epoch++) {
		for (int batch = 0; batch < minibatchNumber; batch++) {
			classifier.train(train_X_minibatch.get(batch), train_T_minibatch.get(batch), minibatchSize, learningRate);
		}
		learningRate *= 0.95;
	}

	// test
	INDArray predicted_T = classifier.predict(testSet);

	// evaluate
	for (int i = 0; i < testSetSize; i++) {
		System.out.print("[" + testSet.getDouble(i, 0) + ", " + testSet.getDouble(i, 1) + "] -> Prediction: ");
		if (predicted_T.getDouble(i, 0) > predicted_T.getDouble(i, 1)) {
			System.out.print("Positive, ");
			System.out.print("probability = " + predicted_T.getDouble(i, 0));
		} else {
			System.out.print("Negative, ");
			System.out.print("probability = " + predicted_T.getDouble(i, 1));
		}
		System.out.print("; Actual: ");
		if (testLabel.getDouble(i, 0) == 1) {
			System.out.println("Positive");
		} else {
			System.out.println("Negative");
		}
	}
}
 
開發者ID:IsaacChanghau,項目名稱:NeuralNetworksLite,代碼行數:74,代碼來源:LogisticRegressionXORExample.java

示例3: main

import org.nd4j.linalg.api.ndarray.INDArray; //導入方法依賴的package包/類
public static void main(String[] args) {
	final Random rng = new Random(123); // seed random
	// Declare variables and constants
	final int patterns = 2; // nOut
	final int trainSetSize = 4;
	final int testSetSize = 4;
	final int nIn = 2;
	final int nHidden = 3;

	INDArray trainSet = Nd4j.create(new double[]{0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0}, new int[]{trainSetSize, 2});
	INDArray trainLabel = Nd4j.create(new double[]{0, 1, 1, 0, 1, 0, 0, 1}, new int[]{4, 2});

	INDArray testSet = Nd4j.create(new double[]{0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0}, new int[]{testSetSize, 2});
	INDArray testLabel = Nd4j.create(new double[]{0, 1, 1, 0, 1, 0, 0, 1}, new int[]{4, 2});

	final int epochs = 5000;
	double learningRate = 0.1;

	final int minibatchSize = 1; //  here, we do online training
	int minibatchNumber = trainSetSize / minibatchSize;

	List<INDArray> trainSetMinibatch = new ArrayList<>();
	List<INDArray> trainLabelMinibatch = new ArrayList<>();

	List<Integer> minibatchIndex = new ArrayList<>(); // data index for minibatch to apply SGD
	for (int i = 0; i < trainSetSize; i++) minibatchIndex.add(i);
	Collections.shuffle(minibatchIndex, rng); // shuffle data index for SGD

	// create minibatches with training data
	for (int i = 0; i < minibatchNumber; i++) {
		INDArray trainX = Nd4j.create(new double[minibatchSize * nIn], new int[] {minibatchSize, nIn});
		INDArray trainT = Nd4j.create(new double[minibatchSize * patterns], new int[] {minibatchSize, patterns});
		for (int j = 0; j < minibatchSize; j++) {
			trainX.putRow(j, trainSet.getRow(minibatchIndex.get(i * minibatchSize + j)));
			trainT.putRow(j, trainLabel.getRow(minibatchIndex.get(i * minibatchSize + j)));
		}
		trainSetMinibatch.add(trainX);
		trainLabelMinibatch.add(trainT);
	}

	// Build Multi-Layer Perceptrons model
	// construct
	MultiLayerPerceptron classifier = new MultiLayerPerceptron(nIn, nHidden, patterns, rng);

	// train
	for (int epoch = 0; epoch < epochs; epoch++) {
		for (int batch = 0; batch < minibatchNumber; batch++) {
			classifier.train(trainSetMinibatch.get(batch), trainLabelMinibatch.get(batch), minibatchSize, learningRate);
		}
	}

	// test
	INDArray predicted_T = classifier.predict(testSet);

	// Evaluate the model
	Evaluation evaluation = new Evaluation(predicted_T, testLabel).fit();
	double accuracy = evaluation.getAccuracy();
	double[] precision = evaluation.getPrecision();
	double[] recall = evaluation.getRecall();

	System.out.println("MLP model evaluation");
	System.out.println("--------------------");
	System.out.printf("Accuracy: %.1f %%\n", accuracy * 100);
	System.out.println("Precision:");
	for (int i = 0; i < patterns; i++) System.out.printf(" class %d: %.1f %%\n", i + 1, precision[i] * 100);
	System.out.println("Recall:");
	for (int i = 0; i < patterns; i++) System.out.printf(" class %d: %.1f %%\n", i + 1, recall[i] * 100);
}
 
開發者ID:IsaacChanghau,項目名稱:NeuralNetworksLite,代碼行數:69,代碼來源:MultiLayerPerceptronExample.java


注:本文中的org.nd4j.linalg.api.ndarray.INDArray.putRow方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。