本文整理匯總了Java中org.nd4j.linalg.api.ndarray.INDArray.mmul方法的典型用法代碼示例。如果您正苦於以下問題:Java INDArray.mmul方法的具體用法?Java INDArray.mmul怎麽用?Java INDArray.mmul使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類org.nd4j.linalg.api.ndarray.INDArray
的用法示例。
在下文中一共展示了INDArray.mmul方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: nd4JExample
import org.nd4j.linalg.api.ndarray.INDArray; //導入方法依賴的package包/類
public void nd4JExample() {
double[] A = {
0.1950, 0.0311,
0.3588, 0.2203,
0.1716, 0.5931,
0.2105, 0.3242};
double[] B = {
0.0502, 0.9823, 0.9472,
0.5732, 0.2694, 0.916};
INDArray aINDArray = Nd4j.create(A,new int[]{4,2},'c');
INDArray bINDArray = Nd4j.create(B,new int[]{2,3},'c');
INDArray cINDArray;
cINDArray = aINDArray.mmul(bINDArray);
for(int i=0; i<cINDArray.rows(); i++) {
System.out.println(cINDArray.getRow(i));
}
}
開發者ID:PacktPublishing,項目名稱:Machine-Learning-End-to-Endguide-for-Java-developers,代碼行數:22,代碼來源:MathExamples.java
示例2: apply
import org.nd4j.linalg.api.ndarray.INDArray; //導入方法依賴的package包/類
/**
* Computes the filtered {@link GaussianDistribution} (mean and covariance) using the supplied
* state-, measurement-, and control-transition matrices, and the supplied control input, process
* noise, observation noise, and current state.
*
* @param stateTransitionMatrix The state-transition matrix used in projecting the {@link
* GaussianDistribution}.
* @param measurementTransitionMatrix The measurement-transition matrix used in computing the
* measurement based on the supplied state.
* @param controlTransitionMatrix The control-transition matrix used in computing the effect
* of the control input on the resultant {@link
* GaussianDistribution}.
* @param controlInputVector The control input.
* @param processCovariance The process variance matrix. This matrix determines the
* impact of the state transition matrix on the filter and can
* be seen as an indication of how trustworthy the state
* transition model is. Lower values in the process covariance
* matrix result in the filtered state tending towards the
* projected state using the state transition model. Higher
* values result in the filtered state tending towards the
* measurements.
* @param measurement The {@link GaussianDistribution} of the measurement, where
* the mean is equal to the measurement vector and the
* covariance is equal to the measurement variance matrix.
* @param previousState The {@link GaussianDistribution} of the latest state.
* @return The filtered state.
*/
public Distribution apply(
final INDArray stateTransitionMatrix,
final INDArray measurementTransitionMatrix,
final INDArray controlTransitionMatrix,
final INDArray controlInputVector,
final INDArray processCovariance,
final Distribution measurement,
final Distribution previousState
) {
final INDArray projectedState = stateTransitionMatrix.mmul(previousState.getMean())
.add(controlTransitionMatrix.mmul(controlInputVector));
final INDArray projectedErrorCovariance =
stateTransitionMatrix
.mmul(previousState.getCovariance().mmul(stateTransitionMatrix.transpose()))
.add(processCovariance);
final INDArray kalmanGain = projectedErrorCovariance
.mmul(measurementTransitionMatrix.transpose()
.mmul(InvertMatrix.invert(measurementTransitionMatrix
.mmul(projectedErrorCovariance
.mmul(measurementTransitionMatrix.transpose()))
.add(measurement.getCovariance()), false)));
final INDArray estimatedState = projectedState
.add(kalmanGain
.mmul(measurement.getMean().sub(measurementTransitionMatrix.mmul(projectedState))));
final INDArray estimatedErrorCovariance =
(Nd4j.eye(estimatedState.rows()).sub(kalmanGain.mmul(measurementTransitionMatrix)))
.mmul(projectedErrorCovariance);
return new SimpleDistribution(estimatedState, estimatedErrorCovariance);
}
示例3: apply
import org.nd4j.linalg.api.ndarray.INDArray; //導入方法依賴的package包/類
/**
* Computes the filtered {@link Distribution} (mean and covariance) using the supplied state- and
* measurement-transition functions, their respective Jacobians and the supplied control input,
* process noise, observation noise, and current state.
*
* @param stateTransition A {@link BiFunction} which takes as its first argument the
* previous state, and the control input as its second
* argument. The result is the next state.
* @param measurementTransition A {@link Function} which takes as its first argument the
* current state and returns the measurement.
* @param stateTransitionJacobian The Jacobian representing the state-transition.
* @param measurementTransitionJacobian The Jacobian representing the measurement-transition.
* @param controlInput The control input.
* @param processCovariance the process covariance
* @param observationNoise The {@link Distribution} of observation noise
* @param state The {@link Distribution} of the latest state.
* @return The filtered state.
*/
public Distribution apply(
final BiFunction<INDArray, INDArray, INDArray> stateTransition,
final Function<INDArray, INDArray> measurementTransition,
final INDArray stateTransitionJacobian,
final INDArray measurementTransitionJacobian,
final INDArray controlInput,
final INDArray processCovariance,
final Distribution observationNoise,
final Distribution state
) {
final INDArray projectedState = stateTransition.apply(state.getMean(), controlInput);
final INDArray projectedErrorCovariance = stateTransitionJacobian
.mmul(state.getMean()
.mmul(stateTransitionJacobian.transpose()))
.add(processCovariance);
final INDArray kalmanGain = projectedErrorCovariance
.mmul(measurementTransitionJacobian.transpose()
.mmul(InvertMatrix.invert(measurementTransitionJacobian
.mmul(projectedErrorCovariance
.mmul(measurementTransitionJacobian.transpose()))
.add(observationNoise.getCovariance()), false)));
final INDArray estimatedState = projectedState
.add(kalmanGain
.mmul(measurementTransition.apply(state.getMean())
.sub(measurementTransition.apply(projectedState))));
final INDArray estimatedErrorCovariance = Nd4j.eye(estimatedState.rows())
.sub(kalmanGain.
mul(measurementTransitionJacobian))
.mmul(projectedErrorCovariance);
return new SimpleDistribution(estimatedState, estimatedErrorCovariance);
}
示例4: isTransitive
import org.nd4j.linalg.api.ndarray.INDArray; //導入方法依賴的package包/類
private boolean isTransitive(double[] ilpSolution, int n) {
double[][] adjacencyMatrix = new double[n][n];
int k = 0;
for (int i = 0; i < n; i++) {
adjacencyMatrix[i][i] = 1;
for (int j = i + 1; j < n; j++) {
adjacencyMatrix[i][j] = ilpSolution[k];
adjacencyMatrix[j][i] = ilpSolution[k];
k++;
}
}
INDArray m = new NDArray(adjacencyMatrix);
INDArray m2 = m.mmul(m);
System.out.println(m);
for (int i = 0; i < m.rows(); i++) {
for (int j = 0; j < m.columns(); j++) {
if (m2.getDouble(i, j) > 0 && m.getDouble(i, j) == 0) {
System.out.println(i + " " + j + " " + m2.getDouble(i, j) + " " + m.getDouble(i, j));
return false;
}
}
}
return true;
}