當前位置: 首頁>>代碼示例>>Java>>正文


Java SQLContext.sql方法代碼示例

本文整理匯總了Java中org.apache.spark.sql.SQLContext.sql方法的典型用法代碼示例。如果您正苦於以下問題:Java SQLContext.sql方法的具體用法?Java SQLContext.sql怎麽用?Java SQLContext.sql使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在org.apache.spark.sql.SQLContext的用法示例。


在下文中一共展示了SQLContext.sql方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: getBodyContent

import org.apache.spark.sql.SQLContext; //導入方法依賴的package包/類
private DataFrame getBodyContent(SQLContext sqlContxt, String jsonPath, String bodyColumn,
		String whereClause, String label) {
	DataFrame df = sqlContxt.read().json(jsonPath);
	df.registerTempTable("news");
	df.printSchema();
	
	String sql = "SELECT\n"
			   + "  generateId('') AS id,\n"
			   + "	" + bodyColumn + " AS content,\n"
			   + "	CAST(" + label + " AS Double) AS label\n"
			   + "FROM news\n"
			   + "WHERE (trim(nvl(" + bodyColumn + " , '')) != '')\n"
			   + whereClause;
	DataFrame newsData = sqlContxt.sql(sql);
	
	return newsData;
}
 
開發者ID:mhardalov,項目名稱:news-credibility,代碼行數:18,代碼來源:DatasetLoader.java

示例2: getLinesFromDASTable

import org.apache.spark.sql.SQLContext; //導入方法依賴的package包/類
public static JavaRDD<String> getLinesFromDASTable(String tableName, int tenantId, JavaSparkContext sparkContext)
        throws AnalyticsTableNotAvailableException, AnalyticsException {
    JavaRDD<String> lines;
    String tableSchema = extractTableSchema(tableName, tenantId);
    SQLContext sqlCtx = new SQLContext(sparkContext);
    sqlCtx.sql("CREATE TEMPORARY TABLE ML_REF USING org.wso2.carbon.analytics.spark.core.sources.AnalyticsRelationProvider "
            + "OPTIONS ("
            + "tenantId \""
            + tenantId
            + "\", "
            + "tableName \""
            + tableName
            + "\", "
            + "schema \""
            + tableSchema + "\"" + ")");

    DataFrame dataFrame = sqlCtx.sql("select * from ML_REF");
    // Additional auto-generated column "_timestamp" needs to be dropped because it is not in the schema.
    JavaRDD<Row> rows = dataFrame.drop("_timestamp").javaRDD();
    lines = rows.map(new RowsToLines.Builder().separator(CSVFormat.RFC4180.getDelimiter() + "").build());
    return lines;
}
 
開發者ID:wso2-attic,項目名稱:carbon-ml,代碼行數:23,代碼來源:MLUtils.java

示例3: main

import org.apache.spark.sql.SQLContext; //導入方法依賴的package包/類
public static void main(String[] args) throws Exception {
	if (args.length != 3) {
     throw new Exception("Usage LoadHive sparkMaster tbl");
	}
   String master = args[0];
   String tbl = args[1];

	JavaSparkContext sc = new JavaSparkContext(
     master, "loadhive", System.getenv("SPARK_HOME"), System.getenv("JARS"));
   SQLContext sqlCtx = new SQLContext(sc);
   DataFrame rdd = sqlCtx.sql("SELECT key, value FROM src");
   JavaRDD<Integer> squaredKeys = rdd.toJavaRDD().map(new SquareKey());
   List<Integer> result = squaredKeys.collect();
   for (Integer elem : result) {
     System.out.println(elem);
   }
}
 
開發者ID:holdenk,項目名稱:learning-spark-examples,代碼行數:18,代碼來源:LoadHive.java

示例4: computeNodeData

import org.apache.spark.sql.SQLContext; //導入方法依賴的package包/類
public void computeNodeData(SQLContext sqlContext){
  
    if (tableName == null) {
      System.err.println("The predicate does not have a VP table: " + triplePattern.predicate);
         return;
    }
  
	StringBuilder query = new StringBuilder("SELECT DISTINCT ");
	
	// SELECT
	if (triplePattern.subjectType == ElementType.VARIABLE &&
			triplePattern.objectType == ElementType.VARIABLE)
		query.append("s AS " + Utils.removeQuestionMark(triplePattern.subject) + 
				", o AS " + Utils.removeQuestionMark(triplePattern.object) + " ");
	else if (triplePattern.subjectType == ElementType.VARIABLE)
		query.append("s AS " + Utils.removeQuestionMark(triplePattern.subject) );
	else if (triplePattern.objectType == ElementType.VARIABLE) 
		query.append("o AS " + Utils.removeQuestionMark(triplePattern.object));
	
	
	// FROM
	query.append(" FROM ");
	query.append("vp_" + tableName);
	
	// WHERE
	if( triplePattern.objectType == ElementType.CONSTANT || triplePattern.subjectType == ElementType.CONSTANT)
		query.append(" WHERE ");
	if (triplePattern.objectType == ElementType.CONSTANT)
		query.append(" o='" + triplePattern.object +"' ");
	
	if (triplePattern.subjectType == ElementType.CONSTANT)
		query.append(" s='" + triplePattern.subject +"' ");
	
	this.sparkNodeData = sqlContext.sql(query.toString());
}
 
開發者ID:tf-dbis-uni-freiburg,項目名稱:PRoST,代碼行數:36,代碼來源:VpNode.java

示例5: runScript

import org.apache.spark.sql.SQLContext; //導入方法依賴的package包/類
/**
 * Splits the bundled hql script into multiple expressions using ScriptSlitter utility class.
 * Each expression is run on the provided HiveContext.
 *
 * @param sqlContext an SQLContext, as provided by spark through the TestHiveServer TestRule, used to run hql expressions
 */
@Override
public void runScript(SQLContext sqlContext) {
    String[] expressions = ScriptSplitter.splitScriptIntoExpressions(script);
    for (String expression : expressions) {
        sqlContext.sql(expression);
    }
}
 
開發者ID:FINRAOS,項目名稱:HiveQLUnit,代碼行數:14,代碼來源:MultiExpressionScript.java

示例6: runScriptReturnResults

import org.apache.spark.sql.SQLContext; //導入方法依賴的package包/類
/**
 * Splits the bundled hql script into multiple expressions using ScriptSlitter utility class.
 * Each expression is run on the provided HiveContext.
 *
 * @param sqlContext an SQLContext, as provided by spark through the TestHiveServer TestRule, used to run hql expressions
 * @return the row results acquired from the last executed expression
 */
@Override
public List<Row> runScriptReturnResults(SQLContext sqlContext) {
    String[] expressions = ScriptSplitter.splitScriptIntoExpressions(script);
    for (int i = 0; i < expressions.length - 1; i++) {
        String expression = expressions[i];
        sqlContext.sql(expression);
    }

    List<Row> rows = sqlContext.sql(expressions[expressions.length - 1]).collectAsList();
    return rows;
}
 
開發者ID:FINRAOS,項目名稱:HiveQLUnit,代碼行數:19,代碼來源:MultiExpressionScript.java

示例7: main

import org.apache.spark.sql.SQLContext; //導入方法依賴的package包/類
public static void main(String[] args) {

    SparkConf sparkConf = new SparkConf()
            .setAppName("ReadFromMapRDB-DF-Java")
            .setMaster("local[1]");
    JavaSparkContext jsc = new JavaSparkContext(sparkConf);
    SQLContext sqlContext = new SQLContext(jsc);

    Configuration config = null;
    try {
      config = HBaseConfiguration.create();
      config.set(TableInputFormat.INPUT_TABLE, "/apps/tests/users_profiles");
    } catch (Exception ce) {
      ce.printStackTrace();
    }

    JavaPairRDD hBaseRDD =
            jsc.newAPIHadoopRDD(config, TableInputFormat.class, ImmutableBytesWritable.class, Result.class);

    // convert HBase result into Java RDD Pair key/User
    JavaPairRDD rowPairRDD = hBaseRDD.mapToPair(

            new PairFunction<Tuple2, String, User>() {
              @Override
              public Tuple2 call(
                      Tuple2 entry) throws Exception {

                Result r = (Result) entry._2;
                String rowKey = Bytes.toString(r.getRow());

                User user = new User();
                user.setRowkey( rowKey );
                user.setFirstName(Bytes.toString(r.getValue(Bytes.toBytes("default"), Bytes.toBytes("first_name"))));
                user.setLastName(Bytes.toString(r.getValue(Bytes.toBytes("default"), Bytes.toBytes("last_name"))));

                return new Tuple2(rowKey, user);
              }
            });

    System.out.println("************ RDD *************");
    System.out.println(rowPairRDD.count());
    System.out.println(rowPairRDD.keys().collect());
    System.out.println(rowPairRDD.values().collect());

    System.out.println("************ DF *************");
    DataFrame df = sqlContext.createDataFrame(rowPairRDD.values(), User.class);

    System.out.println(df.count());
    System.out.println(df.schema());
    df.show();

    System.out.println("************ DF with SQL *************");
    df.registerTempTable("USER_TABLE");
    DataFrame dfSql = sqlContext.sql("SELECT *  FROM USER_TABLE  WHERE firstName = 'Ally' ");
    System.out.println(dfSql.count());
    System.out.println(dfSql.schema());
    dfSql.show();


    jsc.close();

  }
 
開發者ID:tgrall,項目名稱:hbase-maprdb-spark,代碼行數:63,代碼來源:ReadFromHbaseDF.java

示例8: getTrainingDataset

import org.apache.spark.sql.SQLContext; //導入方法依賴的package包/類
public static DataFrame getTrainingDataset(SQLContext sqlContxt) {
	DataFrame df = sqlContxt.read().json("/home/momchil/Documents/MasterThesis/dataset/w2v/long-abstracts_bg.json");
	df.registerTempTable("dbpedia");
	df.printSchema();
	
	String sqlText = 
			"SELECT abstract as content\n"
			+ "FROM dbpedia\n"
			+ "WHERE abstract IS NOT NULL\n"
			+ "LIMIT 101444"; //171444
	df = sqlContxt.sql(sqlText);
	
	return df;
}
 
開發者ID:mhardalov,項目名稱:news-credibility,代碼行數:15,代碼來源:Word2VecExtractor.java

示例9: main

import org.apache.spark.sql.SQLContext; //導入方法依賴的package包/類
public static void main(String[] args) {
	SparkConf conf = new SparkConf();
	conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer");

	JavaSparkContext sc = new JavaSparkContext("local", "JavaAPISuite", conf);

	SQLContext sqlContext = new SQLContext(sc);
	// Creates a DataFrame from a specified file
	DataFrame plays = sqlContext.load("output", "com.databricks.spark.avro");

	// Apply the schema to the RDD.
	sqlContext.registerDataFrameAsTable(plays, "playbyplay");

	// Run the query
	DataFrame join = sqlContext
					.sql("select playtype, pertotalstable.totalperplay, totalstable.total, ((pertotalstable.totalperplay / totalstable.total) * 100) as percentage from " +  
			"(select playtype, count(*) as totalperplay from playbyplay where rooftype <> \"None\" and prcp <= 0 group by playtype) pertotalstable " + 
			"full outer join " +
			"(select count(*) as total from playbyplay where rooftype <> \"None\" and prcp <= 0) totalstable " + 
			"order by playtype");
	
	// Output the query's rows
	join.javaRDD().collect().forEach((Row row) -> {
		System.out.println("Result:" + row.toString());
	});

}
 
開發者ID:eljefe6a,項目名稱:nfldata,代碼行數:28,代碼來源:PlayAnalyzer.java

示例10: runSQL

import org.apache.spark.sql.SQLContext; //導入方法依賴的package包/類
private static void runSQL(SQLContext sqlContext, String query) {
	// Run the query
	DataFrame df = sqlContext.sql(query);
	
	// Output the query's rows
	df.javaRDD().collect().forEach((Row row) -> {
		System.out.println("Result:" + row.toString());
	});
}
 
開發者ID:eljefe6a,項目名稱:nfldata,代碼行數:10,代碼來源:AllQueryAnalyzer.java

示例11: main

import org.apache.spark.sql.SQLContext; //導入方法依賴的package包/類
public static void main(String[] args) throws IOException {
  SparkConf conf = new SparkConf().setAppName("SQLQueryBAM");

  JavaSparkContext sc = new JavaSparkContext(conf);
  SQLContext sqlContext = new HiveContext(sc.sc());

  Options options = new Options();
  Option opOpt = new Option( "out", true, "HDFS path for output files. If not present, the output files are not moved to HDFS." );
  Option queryOpt = new Option( "query", true, "SQL query string." );
  Option baminOpt = new Option( "in", true, "" );

  options.addOption( opOpt );
  options.addOption( queryOpt );
  options.addOption( baminOpt );
  CommandLineParser parser = new BasicParser();
  CommandLine cmd = null;
  try {
    cmd = parser.parse( options, args );

  }
  catch( ParseException exp ) {
    System.err.println( "Parsing failed.  Reason: " + exp.getMessage() );
  }

  String bwaOutDir = (cmd.hasOption("out")==true)? cmd.getOptionValue("out"):null;
  String query = (cmd.hasOption("query")==true)? cmd.getOptionValue("query"):null;
  String bamin = (cmd.hasOption("in")==true)? cmd.getOptionValue("in"):null;

  sc.hadoopConfiguration().setBoolean(BAMInputFormat.KEEP_PAIRED_READS_TOGETHER_PROPERTY, true);

  //Read BAM/SAM from HDFS
  JavaPairRDD<LongWritable, SAMRecordWritable> bamPairRDD = sc.newAPIHadoopFile(bamin, AnySAMInputFormat.class, LongWritable.class, SAMRecordWritable.class, sc.hadoopConfiguration());
  //Map to SAMRecord RDD
  JavaRDD<SAMRecord> samRDD = bamPairRDD.map(v1 -> v1._2().get());
  JavaRDD<MyAlignment> rdd = samRDD.map(bam -> new MyAlignment(bam.getReadName(), bam.getStart(), bam.getReferenceName(), bam.getReadLength(), new String(bam.getReadBases(), StandardCharsets.UTF_8), bam.getCigarString(), bam.getReadUnmappedFlag(), bam.getDuplicateReadFlag()));

  Dataset<Row> samDF = sqlContext.createDataFrame(rdd, MyAlignment.class);
  samDF.registerTempTable(tablename);
  if(query!=null) {

    //Save as parquet file
    Dataset df2 = sqlContext.sql(query);
    df2.show(100,false);

    if(bwaOutDir!=null)
      df2.write().parquet(bwaOutDir);

  }else{
    if(bwaOutDir!=null)
      samDF.write().parquet(bwaOutDir);
  }

  sc.stop();

}
 
開發者ID:NGSeq,項目名稱:ViraPipe,代碼行數:56,代碼來源:SQLQueryBAM.java

示例12: computeNodeData

import org.apache.spark.sql.SQLContext; //導入方法依賴的package包/類
public void computeNodeData(SQLContext sqlContext) {

		StringBuilder query = new StringBuilder("SELECT ");
		ArrayList<String> whereConditions = new ArrayList<String>();
		ArrayList<String> explodedColumns = new ArrayList<String>();

		// subject
		if (tripleGroup.get(0).subjectType == ElementType.VARIABLE) 
		  query.append("s AS " + Utils.removeQuestionMark(tripleGroup.get(0).subject) + ",");

		// objects
		for (TriplePattern t : tripleGroup) {
		    String columnName = stats.findTableName(t.predicate.toString());
		    if (columnName == null) {
		      System.err.println("This column does not exists: " + t.predicate);
		      return;
		    }
		    if(t.subjectType == ElementType.CONSTANT) {
		      whereConditions.add("s='" + t.subject + "'");
		    }
			if (t.objectType == ElementType.CONSTANT) {
				if (t.isComplex)
					whereConditions
							.add("array_contains(" +columnName + ", '" + t.object + "')");
				else
					whereConditions.add(columnName + "='" + t.object + "'");
			} else if (t.isComplex) {
				query.append(" P" + columnName + " AS " + Utils.removeQuestionMark(t.object) + ",");
				explodedColumns.add(columnName);
			} else {
				query.append(
						" " + columnName + " AS " + Utils.removeQuestionMark(t.object) + ",");
				whereConditions.add(columnName + " IS NOT NULL");
			}
		}

		// delete last comma
		query.deleteCharAt(query.length() - 1);

		// TODO: parameterize the name of the table
		query.append(" FROM property_table ");
		for (String explodedColumn : explodedColumns) {
			query.append("\n lateral view explode(" + explodedColumn + ") exploded" + explodedColumn + " AS P"
					+ explodedColumn);
		}

		if (!whereConditions.isEmpty()) {
			query.append(" WHERE ");
			query.append(String.join(" AND ", whereConditions));
		}

		this.sparkNodeData = sqlContext.sql(query.toString());
	}
 
開發者ID:tf-dbis-uni-freiburg,項目名稱:PRoST,代碼行數:54,代碼來源:PtNode.java

示例13: getMovieRecommendations

import org.apache.spark.sql.SQLContext; //導入方法依賴的package包/類
public static void getMovieRecommendations(int userId, int num, ResultSet[] resultSets) {
    try {
        JavaSparkContext spliceSparkContext = SpliceSpark.getContext();
        SQLContext sqlContext = new SQLContext(spliceSparkContext);
        Connection conn = DriverManager.getConnection("jdbc:default:connection");

        // Read the latest models path form database
        String modelPath = "tmp/movielensRecommender";
        Statement stmt = conn.createStatement();
        ResultSet rs = stmt.executeQuery("SELECT model_path from MOVIELENS.MODEL ORDER BY create_date DESC {limit 1}");
        if (rs.next()) {
            modelPath = rs.getString(1);
        }
        rs.close();
        stmt.close();

        // Load the model
        MatrixFactorizationModel sameModel = MatrixFactorizationModel.load(spliceSparkContext.sc(), modelPath);

        // Get recommendation for the specified user and number of items
        Rating[] recom = sameModel.recommendProducts(userId, num);

        // Load the Movies table to get the details of the Movies
        Map<String, String> options = new HashMap<String, String>();
        options.put("driver", "com.splicemachine.db.jdbc.ClientDriver");
        options.put( "url", "jdbc:splice://localhost:1527/splicedb;user=splice;password=admin;useSpark=true");
        options.put("dbtable", "MOVIELENS.MOVIES");
        DataFrame moviesDF = sqlContext.read().format("jdbc").options(options).load();

        moviesDF.registerTempTable("TEMP_MOVIES");

        // Collect the Movied Ids from Recommendations
        StringBuffer sFilter = new StringBuffer();
        for (Rating rate : recom) {
            if (sFilter.length() > 0)
                sFilter.append(", ");
            sFilter.append(rate.product());
        }

        // Apply filter to select only the recommended Movies
        DataFrame filteredMoviesDF = sqlContext.sql("Select * from TEMP_MOVIES where MOVIE_ID in (" + sFilter.toString() + ")");
        List<Row> recMovieList = filteredMoviesDF.collectAsList();

        // Collect the details to build Result Set to return with the
        // details
        int movId = 0;
        String movTitle = "";
        List<ExecRow> rows = new ArrayList();

        for (Row movie : recMovieList) {
            ExecRow row = new ValueRow(9);
            row.setColumn(1, new SQLInteger(movie.getInt(0)));
            row.setColumn(2, new SQLVarchar(movie.getString(1)));
            rows.add(row);
        }

        // Convert the List of ExecRows to Result Set
        Activation lastActivation = ((EmbedConnection) conn).getLanguageConnection().getLastActivation();
        IteratorNoPutResultSet resultsToWrap = new IteratorNoPutResultSet(rows, MOVIE_RECOMMENDATIONS_COLUMNS, lastActivation);
        resultsToWrap.openCore();

        // Set the Return resultset
        resultSets[0] = new EmbedResultSet40((EmbedConnection) conn, resultsToWrap, false, null, true);

    } catch (StandardException e) {
        LOG.error("Exception in getColumnStatistics", e);
        e.printStackTrace();
    } catch (SQLException sqle) {
        LOG.error("Exception in getColumnStatistics", sqle);
        sqle.printStackTrace();
    }
}
 
開發者ID:splicemachine,項目名稱:splice-community-sample-code,代碼行數:73,代碼來源:MovieRecommender.java

示例14: CreateQuery

import org.apache.spark.sql.SQLContext; //導入方法依賴的package包/類
/**
 * Heuristic Naive SPARK implementation of Transitive closure.
 * 
 * @param oldTableName
 * @param newTableName
 * @param whereExpression
 * @param joinOnExpression
 * @param kleeneDepth1
 * @param kleeneDepth2
 * @param kleeneType
 * @param selectionPart
 */
public static void CreateQuery(String[] oldTableName, String newTableName, String whereExpression,
		ArrayList<String> joinOnExpression, int kleeneDepth1, int kleeneDepth2, String kleeneType,
		String[] selectionPart) {

	DataFrame resultFrame = null;
	SQLContext sqlContext = AppSpark.sqlContext;

	int numberOfLines = -1;

	KleeneFixed.CreateQuery(oldTableName, newTableName, whereExpression, joinOnExpression, 0, 3, kleeneType,
			selectionPart);

	String insertTmp = KleeneFixed.baseQuery;

	resultFrame = sqlContext.sql(insertTmp);
	resultFrame.registerTempTable("temp1");

	KleeneFixed.CreateQuery(oldTableName, newTableName, whereExpression, joinOnExpression, 4, -1, kleeneType,
			selectionPart);

	String minusOperation = "SELECT DISTINCT t.subject, t.predicate, t.object FROM (" + KleeneFixed.baseQuery
			+ ") t"
			+ " LEFT JOIN temp1 ON t.subject = temp1.subject AND t.predicate = temp1.predicate AND t.object = "
			+ " temp1.object WHERE temp1.predicate IS NULL ";

	baseQuery = baseQuery + minusOperation + "\n";

	resultFrame = sqlContext.sql(minusOperation);
	resultFrame.registerTempTable("temp2");

	String resultsChecking = "SELECT COUNT(*) AS count FROM temp2";

	resultFrame = sqlContext.sql(resultsChecking);

	Row[] results = resultFrame.collect();
	numberOfLines = (int) results[0].getLong(0);

	baseQuery = baseQuery + resultsChecking + "\n";

	System.out.println("# of new lines " + numberOfLines);

	if (numberOfLines != 0) {
		KleeneSemiNaiveSPARK.CreateQuery(oldTableName, newTableName, joinOnExpression, kleeneType, selectionPart,
				kleeneDepth1, "temp2");
	} else {
		resultFrame = sqlContext.sql("SELECT subject, predicate, object FROM temp1");
		QueryStruct.fillStructure(oldTableName, newTableName, baseQuery, "none", "none");
		ResultStruct.fillStructureSpark(resultFrame);
	}

}
 
開發者ID:martinpz,項目名稱:TriAL-QL-Engine,代碼行數:64,代碼來源:KleeneHeuristicsSPARK.java

示例15: partition

import org.apache.spark.sql.SQLContext; //導入方法依賴的package包/類
/**
 * SPARK Vertical Partitioner.
 * @param inputPath
 * @param outputPath
 */
public static void partition(String inputPath, String outputPath) {
	long lStartTime = System.nanoTime();

	SparkConf sparkConf = new SparkConf().setAppName("JavaSparkSQL").setMaster("local");
	JavaSparkContext ctx = new JavaSparkContext(sparkConf);
	SQLContext sqlContext = new SQLContext(ctx);

	System.out.println("=== Data source: RDD ===");
	
	@SuppressWarnings("serial")
	JavaRDD<RDFgraph> RDF = ctx.textFile(inputPath + "/*").map(new Function<String, RDFgraph>() {
		@Override
		public RDFgraph call(String line) {

			String[] parts = line.split(" (?=(?:[^\"]*\"[^\"]*\")*[^\"]*$)");

			RDFgraph entry = new RDFgraph();
			if (parts.length > 2) {
				entry.setSubject(parts[0]);
				entry.setPredicate(parts[1]);
				entry.setObject(parts[2]);
			}
			return entry;

		}
	});

	DataFrame rawGraph = sqlContext.createDataFrame(RDF, RDFgraph.class);
	rawGraph.registerTempTable("rawGraph");

	int numPredicates = sqlContext
			.sql("SELECT predicate FROM rawGraph WHERE subject != '@prefix' GROUP BY predicate").collect().length;

	DataFrame pureGraph = sqlContext
			.sql("SELECT subject, predicate, object FROM rawGraph WHERE subject != '@prefix'");
	DataFrame partitionedGraph = pureGraph.repartition(numPredicates, new Column("predicate"));

	partitionedGraph.write().parquet(outputPath);

	long lEndTime = System.nanoTime();
	long difference = lEndTime - lStartTime;

	System.out.println("Partitioning complete.\nElapsed milliseconds: " + difference / 1000000);

}
 
開發者ID:martinpz,項目名稱:TriAL-QL-Engine,代碼行數:51,代碼來源:VerticalPartitionerSpark.java


注:本文中的org.apache.spark.sql.SQLContext.sql方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。