本文整理匯總了Java中org.apache.spark.sql.SQLContext.sparkContext方法的典型用法代碼示例。如果您正苦於以下問題:Java SQLContext.sparkContext方法的具體用法?Java SQLContext.sparkContext怎麽用?Java SQLContext.sparkContext使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類org.apache.spark.sql.SQLContext
的用法示例。
在下文中一共展示了SQLContext.sparkContext方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: interpret
import org.apache.spark.sql.SQLContext; //導入方法依賴的package包/類
@Override
public InterpreterResult interpret(String st, InterpreterContext context) {
SQLContext sqlc = null;
SparkInterpreter sparkInterpreter = getSparkInterpreter();
if (sparkInterpreter.getSparkVersion().isUnsupportedVersion()) {
return new InterpreterResult(Code.ERROR, "Spark "
+ sparkInterpreter.getSparkVersion().toString() + " is not supported");
}
sqlc = getSparkInterpreter().getSQLContext();
SparkContext sc = sqlc.sparkContext();
if (concurrentSQL()) {
sc.setLocalProperty("spark.scheduler.pool", "fair");
} else {
sc.setLocalProperty("spark.scheduler.pool", null);
}
sc.setJobGroup(getJobGroup(context), "Zeppelin", false);
Object rdd = null;
try {
// method signature of sqlc.sql() is changed
// from def sql(sqlText: String): SchemaRDD (1.2 and prior)
// to def sql(sqlText: String): DataFrame (1.3 and later).
// Therefore need to use reflection to keep binary compatibility for all spark versions.
Method sqlMethod = sqlc.getClass().getMethod("sql", String.class);
rdd = sqlMethod.invoke(sqlc, st);
} catch (NoSuchMethodException | SecurityException | IllegalAccessException
| IllegalArgumentException | InvocationTargetException e) {
throw new InterpreterException(e);
}
String msg = ZeppelinContext.showDF(sc, context, rdd, maxResult);
sc.clearJobGroup();
return new InterpreterResult(Code.SUCCESS, msg);
}
示例2: cancel
import org.apache.spark.sql.SQLContext; //導入方法依賴的package包/類
@Override
public void cancel(InterpreterContext context) {
SQLContext sqlc = getSparkInterpreter().getSQLContext();
SparkContext sc = sqlc.sparkContext();
sc.cancelJobGroup(getJobGroup(context));
}
示例3: cancel
import org.apache.spark.sql.SQLContext; //導入方法依賴的package包/類
@Override
public void cancel(InterpreterContext context) throws InterpreterException {
SparkInterpreter sparkInterpreter = getSparkInterpreter();
SQLContext sqlc = sparkInterpreter.getSQLContext();
SparkContext sc = sqlc.sparkContext();
sc.cancelJobGroup(Utils.buildJobGroupId(context));
}
示例4: cancel
import org.apache.spark.sql.SQLContext; //導入方法依賴的package包/類
@Override
public void cancel() {
SQLContext sqlc = getSparkInterpreter().getSQLContext();
SparkContext sc = sqlc.sparkContext();
sc.cancelJobGroup(jobGroup);
}
示例5: getProgress
import org.apache.spark.sql.SQLContext; //導入方法依賴的package包/類
public int getProgress() {
SQLContext sqlc = getSparkInterpreter().getSQLContext();
SparkContext sc = sqlc.sparkContext();
JobProgressListener sparkListener = getSparkInterpreter().getJobProgressListener();
int completedTasks = 0;
int totalTasks = 0;
DAGScheduler scheduler = sc.dagScheduler();
HashSet<ActiveJob> jobs = scheduler.activeJobs();
Iterator<ActiveJob> it = jobs.iterator();
while (it.hasNext()) {
ActiveJob job = it.next();
String g = (String) job.properties().get("spark.jobGroup.id");
if (jobGroup.equals(g)) {
int[] progressInfo = null;
if (sc.version().startsWith("1.0")) {
progressInfo = getProgressFromStage_1_0x(sparkListener, job.finalStage());
} else if (sc.version().startsWith("1.1") || sc.version().startsWith("1.2")) {
progressInfo = getProgressFromStage_1_1x(sparkListener, job.finalStage());
} else {
logger.warn("Spark {} getting progress information not supported" + sc.version());
continue;
}
totalTasks += progressInfo[0];
completedTasks += progressInfo[1];
}
}
if (totalTasks == 0) {
return 0;
}
return completedTasks * 100 / totalTasks;
}
示例6: interpret
import org.apache.spark.sql.SQLContext; //導入方法依賴的package包/類
@Override
public InterpreterResult interpret(String st) {
SQLContext sqlc = getSparkInterpreter().getSQLContext();
SparkContext sc = sqlc.sparkContext();
sc.setJobGroup(jobGroup, "Notebook", false);
DataFrame dataFrame;
Row[] rows = null;
try {
dataFrame = sqlc.sql(st);
rows = dataFrame.take(maxResult + 1);
} catch (Exception e) {
logger.error("Error", e);
sc.clearJobGroup();
return new InterpreterResult(Code.ERROR, e.getMessage());
}
String msg = null;
// get field names
List<Attribute> columns = scala.collection.JavaConverters.asJavaListConverter(
dataFrame.queryExecution().analyzed().output()).asJava();
for (Attribute col : columns) {
if (msg == null) {
msg = col.name();
} else {
msg += "\t" + col.name();
}
}
msg += "\n";
// ArrayType, BinaryType, BooleanType, ByteType, DecimalType, DoubleType, DynamicType, FloatType, FractionalType, IntegerType, IntegralType, LongType, MapType, NativeType, NullType, NumericType, ShortType, StringType, StructType
for (int r = 0; r < maxResult && r < rows.length; r++) {
Row row = rows[r];
for (int i = 0; i < columns.size(); i++) {
if (!row.isNullAt(i)) {
msg += row.apply(i).toString();
} else {
msg += "null";
}
if (i != columns.size() - 1) {
msg += "\t";
}
}
msg += "\n";
}
if (rows.length > maxResult) {
msg += "\n<font color=red>Results are limited by " + maxResult + ".</font>";
}
InterpreterResult rett = new InterpreterResult(Code.SUCCESS, "%table " + msg);
sc.clearJobGroup();
return rett;
}