本文整理匯總了Java中org.apache.hadoop.mapreduce.Job.setPartitionerClass方法的典型用法代碼示例。如果您正苦於以下問題:Java Job.setPartitionerClass方法的具體用法?Java Job.setPartitionerClass怎麽用?Java Job.setPartitionerClass使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類org.apache.hadoop.mapreduce.Job
的用法示例。
在下文中一共展示了Job.setPartitionerClass方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: main
import org.apache.hadoop.mapreduce.Job; //導入方法依賴的package包/類
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "test");
job.setMapperClass(testMapper.class);
job.setPartitionerClass(testPartitioner.class);
job.setReducerClass(testReducer.class);
job.setNumReduceTasks(10);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
if (!job.waitForCompletion(true))
return;
}
示例2: createJob
import org.apache.hadoop.mapreduce.Job; //導入方法依賴的package包/類
public Job createJob()
throws IOException {
Configuration conf = getConf();
conf.setInt(MRJobConfig.NUM_MAPS, 1);
Job job = Job.getInstance(conf, "test");
job.setNumReduceTasks(1);
job.setJarByClass(CredentialsTestJob.class);
job.setNumReduceTasks(1);
job.setMapperClass(CredentialsTestJob.CredentialsTestMapper.class);
job.setMapOutputKeyClass(IntWritable.class);
job.setMapOutputValueClass(NullWritable.class);
job.setReducerClass(CredentialsTestJob.CredentialsTestReducer.class);
job.setInputFormatClass(SleepJob.SleepInputFormat.class);
job.setPartitionerClass(SleepJob.SleepJobPartitioner.class);
job.setOutputFormatClass(NullOutputFormat.class);
job.setSpeculativeExecution(false);
job.setJobName("test job");
FileInputFormat.addInputPath(job, new Path("ignored"));
return job;
}
示例3: init
import org.apache.hadoop.mapreduce.Job; //導入方法依賴的package包/類
/** {@inheritDoc} */
@Override
public void init(Job job) {
// setup mapper
job.setMapperClass(PartitionMapper.class);
job.setMapOutputKeyClass(IntWritable.class);
job.setMapOutputValueClass(SummationWritable.class);
// setup partitioner
job.setPartitionerClass(IndexPartitioner.class);
// setup reducer
job.setReducerClass(SummingReducer.class);
job.setOutputKeyClass(NullWritable.class);
job.setOutputValueClass(TaskResult.class);
final Configuration conf = job.getConfiguration();
final int nParts = conf.getInt(N_PARTS, 1);
job.setNumReduceTasks(nParts);
// setup input
job.setInputFormatClass(SummationInputFormat.class);
}
示例4: configurePartitioner
import org.apache.hadoop.mapreduce.Job; //導入方法依賴的package包/類
/**
* Configure <code>job</code> with a TotalOrderPartitioner, partitioning against
* <code>splitPoints</code>. Cleans up the partitions file after job exists.
*/
static void configurePartitioner(Job job, List<ImmutableBytesWritable> splitPoints)
throws IOException {
Configuration conf = job.getConfiguration();
// create the partitions file
FileSystem fs = FileSystem.get(conf);
String hbaseTmpFsDir =
conf.get(HConstants.TEMPORARY_FS_DIRECTORY_KEY,
HConstants.DEFAULT_TEMPORARY_HDFS_DIRECTORY);
Path partitionsPath = new Path(hbaseTmpFsDir, "partitions_" + UUID.randomUUID());
fs.makeQualified(partitionsPath);
writePartitions(conf, partitionsPath, splitPoints);
fs.deleteOnExit(partitionsPath);
// configure job to use it
job.setPartitionerClass(TotalOrderPartitioner.class);
TotalOrderPartitioner.setPartitionFile(conf, partitionsPath);
}
示例5: main
import org.apache.hadoop.mapreduce.Job; //導入方法依賴的package包/類
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: secondarysort <in> <out>");
System.exit(2);
}
Job job = Job.getInstance(conf, "secondary sort");
job.setJarByClass(SecondarySort.class);
job.setMapperClass(MapClass.class);
job.setReducerClass(Reduce.class);
// group and partition by the first int in the pair
job.setPartitionerClass(FirstPartitioner.class);
job.setGroupingComparatorClass(FirstGroupingComparator.class);
// the map output is IntPair, IntWritable
job.setMapOutputKeyClass(IntPair.class);
job.setMapOutputValueClass(IntWritable.class);
// the reduce output is Text, IntWritable
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
示例6: run
import org.apache.hadoop.mapreduce.Job; //導入方法依賴的package包/類
public int run(String[] args) throws Exception {
LOG.info("starting");
Job job = Job.getInstance(getConf());
Path inputDir = new Path(args[0]);
Path outputDir = new Path(args[1]);
boolean useSimplePartitioner = getUseSimplePartitioner(job);
TeraInputFormat.setInputPaths(job, inputDir);
FileOutputFormat.setOutputPath(job, outputDir);
job.setJobName("TeraSort");
job.setJarByClass(TeraSort.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.setInputFormatClass(TeraInputFormat.class);
job.setOutputFormatClass(TeraOutputFormat.class);
if (useSimplePartitioner) {
job.setPartitionerClass(SimplePartitioner.class);
} else {
long start = System.currentTimeMillis();
Path partitionFile = new Path(outputDir,
TeraInputFormat.PARTITION_FILENAME);
URI partitionUri = new URI(partitionFile.toString() +
"#" + TeraInputFormat.PARTITION_FILENAME);
try {
TeraInputFormat.writePartitionFile(job, partitionFile);
} catch (Throwable e) {
LOG.error(e.getMessage());
return -1;
}
job.addCacheFile(partitionUri);
long end = System.currentTimeMillis();
System.out.println("Spent " + (end - start) + "ms computing partitions.");
job.setPartitionerClass(TotalOrderPartitioner.class);
}
job.getConfiguration().setInt("dfs.replication", getOutputReplication(job));
TeraOutputFormat.setFinalSync(job, true);
int ret = job.waitForCompletion(true) ? 0 : 1;
LOG.info("done");
return ret;
}
示例7: createSubmittableJob
import org.apache.hadoop.mapreduce.Job; //導入方法依賴的package包/類
public Job createSubmittableJob(String[] args) throws IOException {
Path partitionsPath = new Path(destPath, PARTITIONS_FILE_NAME);
generatePartitions(partitionsPath);
Job job = Job.getInstance(getConf(),
getConf().get("mapreduce.job.name", "hashTable_" + tableHash.tableName));
Configuration jobConf = job.getConfiguration();
jobConf.setLong(HASH_BATCH_SIZE_CONF_KEY, tableHash.batchSize);
job.setJarByClass(HashTable.class);
TableMapReduceUtil.initTableMapperJob(tableHash.tableName, tableHash.initScan(),
HashMapper.class, ImmutableBytesWritable.class, ImmutableBytesWritable.class, job);
// use a TotalOrderPartitioner and reducers to group region output into hash files
job.setPartitionerClass(TotalOrderPartitioner.class);
TotalOrderPartitioner.setPartitionFile(jobConf, partitionsPath);
job.setReducerClass(Reducer.class); // identity reducer
job.setNumReduceTasks(tableHash.numHashFiles);
job.setOutputKeyClass(ImmutableBytesWritable.class);
job.setOutputValueClass(ImmutableBytesWritable.class);
job.setOutputFormatClass(MapFileOutputFormat.class);
FileOutputFormat.setOutputPath(job, new Path(destPath, HASH_DATA_DIR));
return job;
}
示例8: testWritingPEData
import org.apache.hadoop.mapreduce.Job; //導入方法依賴的package包/類
/**
* Run small MR job.
*/
@Ignore("Goes zombie too frequently; needs work. See HBASE-14563") @Test
public void testWritingPEData() throws Exception {
Configuration conf = util.getConfiguration();
Path testDir = util.getDataTestDirOnTestFS("testWritingPEData");
FileSystem fs = testDir.getFileSystem(conf);
// Set down this value or we OOME in eclipse.
conf.setInt("mapreduce.task.io.sort.mb", 20);
// Write a few files.
conf.setLong(HConstants.HREGION_MAX_FILESIZE, 64 * 1024);
Job job = new Job(conf, "testWritingPEData");
setupRandomGeneratorMapper(job);
// This partitioner doesn't work well for number keys but using it anyways
// just to demonstrate how to configure it.
byte[] startKey = new byte[RandomKVGeneratingMapper.KEYLEN_DEFAULT];
byte[] endKey = new byte[RandomKVGeneratingMapper.KEYLEN_DEFAULT];
Arrays.fill(startKey, (byte)0);
Arrays.fill(endKey, (byte)0xff);
job.setPartitionerClass(SimpleTotalOrderPartitioner.class);
// Set start and end rows for partitioner.
SimpleTotalOrderPartitioner.setStartKey(job.getConfiguration(), startKey);
SimpleTotalOrderPartitioner.setEndKey(job.getConfiguration(), endKey);
job.setReducerClass(KeyValueSortReducer.class);
job.setOutputFormatClass(HFileOutputFormat2.class);
job.setNumReduceTasks(4);
job.getConfiguration().setStrings("io.serializations", conf.get("io.serializations"),
MutationSerialization.class.getName(), ResultSerialization.class.getName(),
KeyValueSerialization.class.getName());
FileOutputFormat.setOutputPath(job, testDir);
assertTrue(job.waitForCompletion(false));
FileStatus [] files = fs.listStatus(testDir);
assertTrue(files.length > 0);
}
示例9: testWritingPEData
import org.apache.hadoop.mapreduce.Job; //導入方法依賴的package包/類
/**
* Run small MR job.
*/
@Test
public void testWritingPEData() throws Exception {
Configuration conf = util.getConfiguration();
Path testDir = util.getDataTestDirOnTestFS("testWritingPEData");
FileSystem fs = testDir.getFileSystem(conf);
// Set down this value or we OOME in eclipse.
conf.setInt("mapreduce.task.io.sort.mb", 20);
// Write a few files.
conf.setLong(HConstants.HREGION_MAX_FILESIZE, 64 * 1024);
Job job = new Job(conf, "testWritingPEData");
setupRandomGeneratorMapper(job);
// This partitioner doesn't work well for number keys but using it anyways
// just to demonstrate how to configure it.
byte[] startKey = new byte[RandomKVGeneratingMapper.KEYLEN_DEFAULT];
byte[] endKey = new byte[RandomKVGeneratingMapper.KEYLEN_DEFAULT];
Arrays.fill(startKey, (byte)0);
Arrays.fill(endKey, (byte)0xff);
job.setPartitionerClass(SimpleTotalOrderPartitioner.class);
// Set start and end rows for partitioner.
SimpleTotalOrderPartitioner.setStartKey(job.getConfiguration(), startKey);
SimpleTotalOrderPartitioner.setEndKey(job.getConfiguration(), endKey);
job.setReducerClass(KeyValueSortReducer.class);
job.setOutputFormatClass(HFileOutputFormat.class);
job.setNumReduceTasks(4);
job.getConfiguration().setStrings("io.serializations", conf.get("io.serializations"),
MutationSerialization.class.getName(), ResultSerialization.class.getName(),
KeyValueSerialization.class.getName());
FileOutputFormat.setOutputPath(job, testDir);
assertTrue(job.waitForCompletion(false));
FileStatus [] files = fs.listStatus(testDir);
assertTrue(files.length > 0);
}
示例10: runCheck
import org.apache.hadoop.mapreduce.Job; //導入方法依賴的package包/類
/**
* After adding data to the table start a mr job to
* @throws IOException
* @throws ClassNotFoundException
* @throws InterruptedException
*/
private void runCheck() throws IOException, ClassNotFoundException, InterruptedException {
LOG.info("Running check");
Configuration conf = getConf();
String jobName = getTablename() + "_check" + EnvironmentEdgeManager.currentTime();
Path p = util.getDataTestDirOnTestFS(jobName);
Job job = new Job(conf);
job.setJarByClass(getClass());
job.setJobName(jobName);
job.setPartitionerClass(NaturalKeyPartitioner.class);
job.setGroupingComparatorClass(NaturalKeyGroupingComparator.class);
job.setSortComparatorClass(CompositeKeyComparator.class);
Scan scan = new Scan();
scan.addFamily(CHAIN_FAM);
scan.addFamily(SORT_FAM);
scan.setMaxVersions(1);
scan.setCacheBlocks(false);
scan.setBatch(1000);
int replicaCount = conf.getInt(NUM_REPLICA_COUNT_KEY, NUM_REPLICA_COUNT_DEFAULT);
if (replicaCount != NUM_REPLICA_COUNT_DEFAULT) {
scan.setConsistency(Consistency.TIMELINE);
}
TableMapReduceUtil.initTableMapperJob(
getTablename().getName(),
scan,
LinkedListCheckingMapper.class,
LinkKey.class,
LinkChain.class,
job
);
job.setReducerClass(LinkedListCheckingReducer.class);
job.setOutputKeyClass(NullWritable.class);
job.setOutputValueClass(NullWritable.class);
FileOutputFormat.setOutputPath(job, p);
assertEquals(true, job.waitForCompletion(true));
// Delete the files.
util.getTestFileSystem().delete(p, true);
}
示例11: testComparator
import org.apache.hadoop.mapreduce.Job; //導入方法依賴的package包/類
private void testComparator(String keySpec, int expect)
throws Exception {
String root = System.getProperty("test.build.data", "/tmp");
Path inDir = new Path(root, "test_cmp/in");
Path outDir = new Path(root, "test_cmp/out");
conf.set("mapreduce.partition.keycomparator.options", keySpec);
conf.set("mapreduce.partition.keypartitioner.options", "-k1.1,1.1");
conf.set(MRJobConfig.MAP_OUTPUT_KEY_FIELD_SEPERATOR, " ");
Job job = MapReduceTestUtil.createJob(conf, inDir, outDir, 1, 1,
line1 +"\n" + line2 + "\n");
job.setMapperClass(InverseMapper.class);
job.setReducerClass(Reducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class);
job.setSortComparatorClass(KeyFieldBasedComparator.class);
job.setPartitionerClass(KeyFieldBasedPartitioner.class);
job.waitForCompletion(true);
assertTrue(job.isSuccessful());
// validate output
Path[] outputFiles = FileUtil.stat2Paths(getFileSystem().listStatus(outDir,
new Utils.OutputFileUtils.OutputFilesFilter()));
if (outputFiles.length > 0) {
InputStream is = getFileSystem().open(outputFiles[0]);
BufferedReader reader = new BufferedReader(new InputStreamReader(is));
String line = reader.readLine();
//make sure we get what we expect as the first line, and also
//that we have two lines (both the lines must end up in the same
//reducer since the partitioner takes the same key spec for all
//lines
if (expect == 1) {
assertTrue(line.startsWith(line1));
} else if (expect == 2) {
assertTrue(line.startsWith(line2));
}
line = reader.readLine();
if (expect == 1) {
assertTrue(line.startsWith(line2));
} else if (expect == 2) {
assertTrue(line.startsWith(line1));
}
reader.close();
}
}
示例12: initTableReducerJob
import org.apache.hadoop.mapreduce.Job; //導入方法依賴的package包/類
/**
* Use this before submitting a TableReduce job. It will
* appropriately set up the JobConf.
*
* @param table The output table.
* @param reducer The reducer class to use.
* @param job The current job to adjust. Make sure the passed job is
* carrying all necessary HBase configuration.
* @param partitioner Partitioner to use. Pass <code>null</code> to use
* default partitioner.
* @param quorumAddress Distant cluster to write to; default is null for
* output to the cluster that is designated in <code>hbase-site.xml</code>.
* Set this String to the zookeeper ensemble of an alternate remote cluster
* when you would have the reduce write a cluster that is other than the
* default; e.g. copying tables between clusters, the source would be
* designated by <code>hbase-site.xml</code> and this param would have the
* ensemble address of the remote cluster. The format to pass is particular.
* Pass <code> <hbase.zookeeper.quorum>:<
* hbase.zookeeper.client.port>:<zookeeper.znode.parent>
* </code> such as <code>server,server2,server3:2181:/hbase</code>.
* @param serverClass redefined hbase.regionserver.class
* @param serverImpl redefined hbase.regionserver.impl
* @param addDependencyJars upload HBase jars and jars for any of the configured
* job classes via the distributed cache (tmpjars).
* @throws IOException When determining the region count fails.
*/
public static void initTableReducerJob(String table,
Class<? extends TableReducer> reducer, Job job,
Class partitioner, String quorumAddress, String serverClass,
String serverImpl, boolean addDependencyJars) throws IOException {
Configuration conf = job.getConfiguration();
HBaseConfiguration.merge(conf, HBaseConfiguration.create(conf));
job.setOutputFormatClass(TableOutputFormat.class);
if (reducer != null) job.setReducerClass(reducer);
conf.set(TableOutputFormat.OUTPUT_TABLE, table);
conf.setStrings("io.serializations", conf.get("io.serializations"),
MutationSerialization.class.getName(), ResultSerialization.class.getName());
// If passed a quorum/ensemble address, pass it on to TableOutputFormat.
if (quorumAddress != null) {
// Calling this will validate the format
ZKConfig.validateClusterKey(quorumAddress);
conf.set(TableOutputFormat.QUORUM_ADDRESS,quorumAddress);
}
if (serverClass != null && serverImpl != null) {
conf.set(TableOutputFormat.REGION_SERVER_CLASS, serverClass);
conf.set(TableOutputFormat.REGION_SERVER_IMPL, serverImpl);
}
job.setOutputKeyClass(ImmutableBytesWritable.class);
job.setOutputValueClass(Writable.class);
if (partitioner == HRegionPartitioner.class) {
job.setPartitionerClass(HRegionPartitioner.class);
int regions = MetaTableAccessor.getRegionCount(conf, TableName.valueOf(table));
if (job.getNumReduceTasks() > regions) {
job.setNumReduceTasks(regions);
}
} else if (partitioner != null) {
job.setPartitionerClass(partitioner);
}
if (addDependencyJars) {
addDependencyJars(job);
}
initCredentials(job);
}