本文整理匯總了Java中org.apache.hadoop.mapreduce.Job.getNumReduceTasks方法的典型用法代碼示例。如果您正苦於以下問題:Java Job.getNumReduceTasks方法的具體用法?Java Job.getNumReduceTasks怎麽用?Java Job.getNumReduceTasks使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類org.apache.hadoop.mapreduce.Job
的用法示例。
在下文中一共展示了Job.getNumReduceTasks方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: configureNumReduceTasks
import org.apache.hadoop.mapreduce.Job; //導入方法依賴的package包/類
@Override
protected int configureNumReduceTasks(Job job) throws IOException {
if (job.getNumReduceTasks() < 1) {
job.setNumReduceTasks(1);
}
return job.getNumReduceTasks();
}
示例2: setConf
import org.apache.hadoop.mapreduce.Job; //導入方法依賴的package包/類
/**
* Read in the partition file and build indexing data structures.
* If the keytype is {@link org.apache.hadoop.io.BinaryComparable} and
* <tt>total.order.partitioner.natural.order</tt> is not false, a trie
* of the first <tt>total.order.partitioner.max.trie.depth</tt>(2) + 1 bytes
* will be built. Otherwise, keys will be located using a binary search of
* the partition keyset using the {@link org.apache.hadoop.io.RawComparator}
* defined for this job. The input file must be sorted with the same
* comparator and contain {@link Job#getNumReduceTasks()} - 1 keys.
*/
@SuppressWarnings("unchecked") // keytype from conf not static
public void setConf(Configuration conf) {
try {
this.conf = conf;
String parts = getPartitionFile(conf);
final Path partFile = new Path(parts);
final FileSystem fs = (DEFAULT_PATH.equals(parts))
? FileSystem.getLocal(conf) // assume in DistributedCache
: partFile.getFileSystem(conf);
Job job = Job.getInstance(conf);
Class<K> keyClass = (Class<K>)job.getMapOutputKeyClass();
K[] splitPoints = readPartitions(fs, partFile, keyClass, conf);
if (splitPoints.length != job.getNumReduceTasks() - 1) {
throw new IOException("Wrong number of partitions in keyset");
}
RawComparator<K> comparator =
(RawComparator<K>) job.getSortComparator();
for (int i = 0; i < splitPoints.length - 1; ++i) {
if (comparator.compare(splitPoints[i], splitPoints[i+1]) >= 0) {
throw new IOException("Split points are out of order");
}
}
boolean natOrder =
conf.getBoolean(NATURAL_ORDER, true);
if (natOrder && BinaryComparable.class.isAssignableFrom(keyClass)) {
partitions = buildTrie((BinaryComparable[])splitPoints, 0,
splitPoints.length, new byte[0],
// Now that blocks of identical splitless trie nodes are
// represented reentrantly, and we develop a leaf for any trie
// node with only one split point, the only reason for a depth
// limit is to refute stack overflow or bloat in the pathological
// case where the split points are long and mostly look like bytes
// iii...iixii...iii . Therefore, we make the default depth
// limit large but not huge.
conf.getInt(MAX_TRIE_DEPTH, 200));
} else {
partitions = new BinarySearchNode(splitPoints, comparator);
}
} catch (IOException e) {
throw new IllegalArgumentException("Can't read partitions file", e);
}
}
示例3: writePartitionFile
import org.apache.hadoop.mapreduce.Job; //導入方法依賴的package包/類
/**
* Write a partition file for the given job, using the Sampler provided.
* Queries the sampler for a sample keyset, sorts by the output key
* comparator, selects the keys for each rank, and writes to the destination
* returned from {@link TotalOrderPartitioner#getPartitionFile}.
*/
@SuppressWarnings("unchecked") // getInputFormat, getOutputKeyComparator
public static <K,V> void writePartitionFile(Job job, Sampler<K,V> sampler)
throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = job.getConfiguration();
final InputFormat inf =
ReflectionUtils.newInstance(job.getInputFormatClass(), conf);
int numPartitions = job.getNumReduceTasks();
K[] samples = (K[])sampler.getSample(inf, job);
LOG.info("Using " + samples.length + " samples");
RawComparator<K> comparator =
(RawComparator<K>) job.getSortComparator();
Arrays.sort(samples, comparator);
Path dst = new Path(TotalOrderPartitioner.getPartitionFile(conf));
FileSystem fs = dst.getFileSystem(conf);
if (fs.exists(dst)) {
fs.delete(dst, false);
}
SequenceFile.Writer writer = SequenceFile.createWriter(fs,
conf, dst, job.getMapOutputKeyClass(), NullWritable.class);
NullWritable nullValue = NullWritable.get();
float stepSize = samples.length / (float) numPartitions;
int last = -1;
for(int i = 1; i < numPartitions; ++i) {
int k = Math.round(stepSize * i);
while (last >= k && comparator.compare(samples[last], samples[k]) == 0) {
++k;
}
writer.append(samples[k], nullValue);
last = k;
}
writer.close();
}
示例4: initTableReducerJob
import org.apache.hadoop.mapreduce.Job; //導入方法依賴的package包/類
/**
* Use this before submitting a TableReduce job. It will
* appropriately set up the JobConf.
*
* @param table The output table.
* @param reducer The reducer class to use.
* @param job The current job to adjust. Make sure the passed job is
* carrying all necessary HBase configuration.
* @param partitioner Partitioner to use. Pass <code>null</code> to use
* default partitioner.
* @param quorumAddress Distant cluster to write to; default is null for
* output to the cluster that is designated in <code>hbase-site.xml</code>.
* Set this String to the zookeeper ensemble of an alternate remote cluster
* when you would have the reduce write a cluster that is other than the
* default; e.g. copying tables between clusters, the source would be
* designated by <code>hbase-site.xml</code> and this param would have the
* ensemble address of the remote cluster. The format to pass is particular.
* Pass <code> <hbase.zookeeper.quorum>:<
* hbase.zookeeper.client.port>:<zookeeper.znode.parent>
* </code> such as <code>server,server2,server3:2181:/hbase</code>.
* @param serverClass redefined hbase.regionserver.class
* @param serverImpl redefined hbase.regionserver.impl
* @param addDependencyJars upload HBase jars and jars for any of the configured
* job classes via the distributed cache (tmpjars).
* @throws IOException When determining the region count fails.
*/
public static void initTableReducerJob(String table,
Class<? extends TableReducer> reducer, Job job,
Class partitioner, String quorumAddress, String serverClass,
String serverImpl, boolean addDependencyJars) throws IOException {
Configuration conf = job.getConfiguration();
HBaseConfiguration.merge(conf, HBaseConfiguration.create(conf));
job.setOutputFormatClass(TableOutputFormat.class);
if (reducer != null) job.setReducerClass(reducer);
conf.set(TableOutputFormat.OUTPUT_TABLE, table);
conf.setStrings("io.serializations", conf.get("io.serializations"),
MutationSerialization.class.getName(), ResultSerialization.class.getName());
// If passed a quorum/ensemble address, pass it on to TableOutputFormat.
if (quorumAddress != null) {
// Calling this will validate the format
ZKConfig.validateClusterKey(quorumAddress);
conf.set(TableOutputFormat.QUORUM_ADDRESS,quorumAddress);
}
if (serverClass != null && serverImpl != null) {
conf.set(TableOutputFormat.REGION_SERVER_CLASS, serverClass);
conf.set(TableOutputFormat.REGION_SERVER_IMPL, serverImpl);
}
job.setOutputKeyClass(ImmutableBytesWritable.class);
job.setOutputValueClass(Writable.class);
if (partitioner == HRegionPartitioner.class) {
job.setPartitionerClass(HRegionPartitioner.class);
int regions = MetaTableAccessor.getRegionCount(conf, TableName.valueOf(table));
if (job.getNumReduceTasks() > regions) {
job.setNumReduceTasks(regions);
}
} else if (partitioner != null) {
job.setPartitionerClass(partitioner);
}
if (addDependencyJars) {
addDependencyJars(job);
}
initCredentials(job);
}
示例5: limitNumReduceTasks
import org.apache.hadoop.mapreduce.Job; //導入方法依賴的package包/類
/**
* Ensures that the given number of reduce tasks for the given job
* configuration does not exceed the number of regions for the given table.
*
* @param table The table to get the region count for.
* @param job The current job to adjust.
* @throws IOException When retrieving the table details fails.
*/
public static void limitNumReduceTasks(String table, Job job)
throws IOException {
int regions =
MetaTableAccessor.getRegionCount(job.getConfiguration(), TableName.valueOf(table));
if (job.getNumReduceTasks() > regions)
job.setNumReduceTasks(regions);
}