本文整理匯總了Java中org.apache.commons.math3.distribution.NormalDistribution.inverseCumulativeProbability方法的典型用法代碼示例。如果您正苦於以下問題:Java NormalDistribution.inverseCumulativeProbability方法的具體用法?Java NormalDistribution.inverseCumulativeProbability怎麽用?Java NormalDistribution.inverseCumulativeProbability使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類org.apache.commons.math3.distribution.NormalDistribution
的用法示例。
在下文中一共展示了NormalDistribution.inverseCumulativeProbability方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: solveLognormalNewsvendor
import org.apache.commons.math3.distribution.NormalDistribution; //導入方法依賴的package包/類
public static Newsvendor solveLognormalNewsvendor (final double price, final double cost, final double mu, final double sigma) {
final NormalDistribution dist1 = new NormalDistribution();
final double cv = sigma/mu;
final double nu = Math.log(mu)-Math.log(Math.sqrt(1+cv*cv));
final double tau = Math.sqrt(Math.log(1+cv*cv));
final LogNormalDistribution dist2 = new LogNormalDistribution(nu,tau);
return new Newsvendor(price,cost) {{
_safetyfactor = dist1.inverseCumulativeProbability((price-cost)/price);
_quantity = Math.exp(nu+tau*_safetyfactor);
_profit = (price-cost)*mu - price*mu*dist1.cumulativeProbability(tau-_safetyfactor)+cost*mu;
}
@Override
public double getProfit(double quantity) {
double lostSales = quantity*(1-dist2.cumulativeProbability(quantity))-Math.exp(nu+tau*tau/2)*dist1.cumulativeProbability((nu+tau*tau-Math.log(quantity))/tau);
return _price*mu -_cost*quantity + _price*lostSales;
}
};
}
示例2: createInterval
import org.apache.commons.math3.distribution.NormalDistribution; //導入方法依賴的package包/類
/** {@inheritDoc} */
public ConfidenceInterval createInterval(int numberOfTrials, int numberOfSuccesses, double confidenceLevel) {
IntervalUtils.checkParameters(numberOfTrials, numberOfSuccesses, confidenceLevel);
final double alpha = (1.0 - confidenceLevel) / 2;
final NormalDistribution normalDistribution = new NormalDistribution();
final double z = normalDistribution.inverseCumulativeProbability(1 - alpha);
final double zSquared = FastMath.pow(z, 2);
final double mean = (double) numberOfSuccesses / (double) numberOfTrials;
final double factor = 1.0 / (1 + (1.0 / numberOfTrials) * zSquared);
final double modifiedSuccessRatio = mean + (1.0 / (2 * numberOfTrials)) * zSquared;
final double difference = z *
FastMath.sqrt(1.0 / numberOfTrials * mean * (1 - mean) +
(1.0 / (4 * FastMath.pow(numberOfTrials, 2)) * zSquared));
final double lowerBound = factor * (modifiedSuccessRatio - difference);
final double upperBound = factor * (modifiedSuccessRatio + difference);
return new ConfidenceInterval(lowerBound, upperBound, confidenceLevel);
}
示例3: getBreakpoints
import org.apache.commons.math3.distribution.NormalDistribution; //導入方法依賴的package包/類
@Override
public double[] getBreakpoints(int areas) {
if (areas < 2) {
throw new NumberIsTooSmallException(areas, 2, true);
}
NormalDistribution normalDistribution = new NormalDistribution();
int len = areas - 1;
double[] result = new double[len];
double searchArea = 1.0 / areas;
for (int i = 0; i < len; i++) {
result[i] = normalDistribution.inverseCumulativeProbability(searchArea * (i + 1));
}
return result;
}
示例4: wilsonApache
import org.apache.commons.math3.distribution.NormalDistribution; //導入方法依賴的package包/類
public static double wilsonApache(int positive, int negative, double confidenceLevel) {
int numberOfTrials = positive + negative;
double alpha = (1.0 - confidenceLevel) / 2;
NormalDistribution normalDistribution = new NormalDistribution();
double z = normalDistribution.inverseCumulativeProbability(1 - alpha);
double zSquared = FastMath.pow(z, 2);
double mean = (double) positive / (double) numberOfTrials;
double factor = 1.0 / (1 + (1.0 / numberOfTrials) * zSquared);
double modifiedSuccessRatio = mean + (1.0 / (2 * numberOfTrials)) * zSquared;
final double difference = z * FastMath.sqrt(1.0 / numberOfTrials * mean * (1 - mean) + (1.0 / (4 * FastMath.pow(numberOfTrials, 2)) * zSquared));
double lowerBound = factor * (modifiedSuccessRatio - difference);
double upperBound = factor * (modifiedSuccessRatio + difference);
System.out.println("lower: "+lowerBound+" upper: "+upperBound+" value: "+(lowerBound+upperBound)/2);
return (lowerBound+upperBound)/2;
}
示例5: solveNormalNewsvendor
import org.apache.commons.math3.distribution.NormalDistribution; //導入方法依賴的package包/類
public static Newsvendor solveNormalNewsvendor (final double price, final double cost, final double mu, final double sigma) {
final NormalDistribution dist = new NormalDistribution();
return new Newsvendor(price,cost) {{
_safetyfactor = dist.inverseCumulativeProbability((price-cost)/price);
_quantity = mu+sigma*_safetyfactor;
_profit = (price-cost)*mu - price*sigma*dist.density(_safetyfactor);
}
@Override
public double getProfit(double quantity) {
double z = (quantity-mu)/sigma;
double lostSales = sigma*(dist.density(z)-z*(1-dist.cumulativeProbability(z)));
return _price*mu -_cost*quantity - _price*lostSales;
}
};
}
示例6: createInterval
import org.apache.commons.math3.distribution.NormalDistribution; //導入方法依賴的package包/類
/** {@inheritDoc} */
public ConfidenceInterval createInterval(int numberOfTrials, int numberOfSuccesses, double confidenceLevel) {
IntervalUtils.checkParameters(numberOfTrials, numberOfSuccesses, confidenceLevel);
final double alpha = (1.0 - confidenceLevel) / 2;
final NormalDistribution normalDistribution = new NormalDistribution();
final double z = normalDistribution.inverseCumulativeProbability(1 - alpha);
final double zSquared = FastMath.pow(z, 2);
final double modifiedNumberOfTrials = numberOfTrials + zSquared;
final double modifiedSuccessesRatio = (1.0 / modifiedNumberOfTrials) * (numberOfSuccesses + 0.5 * zSquared);
final double difference = z *
FastMath.sqrt(1.0 / modifiedNumberOfTrials * modifiedSuccessesRatio *
(1 - modifiedSuccessesRatio));
return new ConfidenceInterval(modifiedSuccessesRatio - difference, modifiedSuccessesRatio + difference,
confidenceLevel);
}
示例7: createInterval
import org.apache.commons.math3.distribution.NormalDistribution; //導入方法依賴的package包/類
/** {@inheritDoc} */
public ConfidenceInterval createInterval(int numberOfTrials, int numberOfSuccesses,
double confidenceLevel) {
IntervalUtils.checkParameters(numberOfTrials, numberOfSuccesses, confidenceLevel);
final double mean = (double) numberOfSuccesses / (double) numberOfTrials;
final double alpha = (1.0 - confidenceLevel) / 2;
final NormalDistribution normalDistribution = new NormalDistribution();
final double difference = normalDistribution.inverseCumulativeProbability(1 - alpha) *
FastMath.sqrt(1.0 / numberOfTrials * mean * (1 - mean));
return new ConfidenceInterval(mean - difference, mean + difference, confidenceLevel);
}
示例8: getEstimate
import org.apache.commons.math3.distribution.NormalDistribution; //導入方法依賴的package包/類
public double getEstimate(double timestamp, double alpha) {
if (alpha == 0.5 && measurements.size() > 0) {
return logarithmize ? Math.pow(Math.E, measurements.getLast().runtime) : Math.max(measurements.getLast().runtime, Double.MIN_NORMAL);
}
if (differences.size() < 2) {
return 0d;
}
Runtime lastMeasurement = measurements.getLast();
double variance = 0d;
double avgDifference = sumOfDifferences / differences.size();
for (double difference : differences) {
variance += Math.pow(difference - avgDifference, 2d);
}
variance /= differences.size() - 1;
variance *= timestamp - lastMeasurement.timestamp;
double estimate = lastMeasurement.runtime;
if (variance > 0d) {
NormalDistribution nd = new NormalDistribution(lastMeasurement.runtime, Math.sqrt(variance));
estimate = nd.inverseCumulativeProbability(alpha);
}
estimate = logarithmize ? Math.pow(Math.E, estimate) : Math.max(estimate, 0d);
return estimate;
}