本文整理匯總了Java中org.apache.commons.math3.distribution.NormalDistribution.cumulativeProbability方法的典型用法代碼示例。如果您正苦於以下問題:Java NormalDistribution.cumulativeProbability方法的具體用法?Java NormalDistribution.cumulativeProbability怎麽用?Java NormalDistribution.cumulativeProbability使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類org.apache.commons.math3.distribution.NormalDistribution
的用法示例。
在下文中一共展示了NormalDistribution.cumulativeProbability方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: solveLognormalNewsvendor
import org.apache.commons.math3.distribution.NormalDistribution; //導入方法依賴的package包/類
public static Newsvendor solveLognormalNewsvendor (final double price, final double cost, final double mu, final double sigma) {
final NormalDistribution dist1 = new NormalDistribution();
final double cv = sigma/mu;
final double nu = Math.log(mu)-Math.log(Math.sqrt(1+cv*cv));
final double tau = Math.sqrt(Math.log(1+cv*cv));
final LogNormalDistribution dist2 = new LogNormalDistribution(nu,tau);
return new Newsvendor(price,cost) {{
_safetyfactor = dist1.inverseCumulativeProbability((price-cost)/price);
_quantity = Math.exp(nu+tau*_safetyfactor);
_profit = (price-cost)*mu - price*mu*dist1.cumulativeProbability(tau-_safetyfactor)+cost*mu;
}
@Override
public double getProfit(double quantity) {
double lostSales = quantity*(1-dist2.cumulativeProbability(quantity))-Math.exp(nu+tau*tau/2)*dist1.cumulativeProbability((nu+tau*tau-Math.log(quantity))/tau);
return _price*mu -_cost*quantity + _price*lostSales;
}
};
}
示例2: test
import org.apache.commons.math3.distribution.NormalDistribution; //導入方法依賴的package包/類
/**
* Testing code...
* @param args
*/
public static void test() {
final NormalDistribution dist_1 = new NormalDistribution(-1,1);
final NormalDistribution dist0 = new NormalDistribution(0,1);
final NormalDistribution dist1 = new NormalDistribution(1,1);
final UnivariateFunction F = new UnivariateFunction() {
@Override
public double value(double x) {
double val = dist_1.cumulativeProbability(x)*dist0.cumulativeProbability(x)*dist1.cumulativeProbability(x);
return val;
}
};
double v;
long t = System.currentTimeMillis();
v = calculateEV_KG(F);
System.out.println("calculateEV_KG "+v+" "+(System.currentTimeMillis()-t));
}
示例3: calculateAsymptoticPValue
import org.apache.commons.math3.distribution.NormalDistribution; //導入方法依賴的package包/類
/**
* @param Wmin smallest Wilcoxon signed rank value
* @param N number of subjects (corresponding to x.length)
* @return two-sided asymptotic p-value
*/
private double calculateAsymptoticPValue(final double Wmin, final int N) {
final double ES = (double) (N * (N + 1)) / 4.0;
/* Same as (but saves computations):
* final double VarW = ((double) (N * (N + 1) * (2*N + 1))) / 24;
*/
final double VarS = ES * ((double) (2 * N + 1) / 6.0);
// - 0.5 is a continuity correction
final double z = (Wmin - ES - 0.5) / FastMath.sqrt(VarS);
// No try-catch or advertised exception because args are valid
// pass a null rng to avoid unneeded overhead as we will not sample from this distribution
final NormalDistribution standardNormal = new NormalDistribution(null, 0, 1);
return 2*standardNormal.cumulativeProbability(z);
}
示例4: calculateAsymptoticPValue
import org.apache.commons.math3.distribution.NormalDistribution; //導入方法依賴的package包/類
/**
* @param Umin smallest Mann-Whitney U value
* @param n1 number of subjects in first sample
* @param n2 number of subjects in second sample
* @return two-sided asymptotic p-value
* @throws ConvergenceException if the p-value can not be computed
* due to a convergence error
* @throws MaxCountExceededException if the maximum number of
* iterations is exceeded
*/
private double calculateAsymptoticPValue(final double Umin,
final int n1,
final int n2)
throws ConvergenceException, MaxCountExceededException {
/* long multiplication to avoid overflow (double not used due to efficiency
* and to avoid precision loss)
*/
final long n1n2prod = (long) n1 * n2;
// http://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U#Normal_approximation
final double EU = n1n2prod / 2.0;
final double VarU = n1n2prod * (n1 + n2 + 1) / 12.0;
final double z = (Umin - EU) / FastMath.sqrt(VarU);
// No try-catch or advertised exception because args are valid
// pass a null rng to avoid unneeded overhead as we will not sample from this distribution
final NormalDistribution standardNormal = new NormalDistribution(null, 0, 1);
return 2 * standardNormal.cumulativeProbability(z);
}
示例5: checkLUT
import org.apache.commons.math3.distribution.NormalDistribution; //導入方法依賴的package包/類
@Test
public void checkLUT() {
int numElements =
(int)((NormalDist.MAXZSCORE - NormalDist.MINZSCORE)/NormalDist.GRANULARITY) + 1;
double[] LUT = new double[numElements];
NormalDistribution dist = new NormalDistribution();
int minKey = (int) Math.round(NormalDist.MINZSCORE / NormalDist.GRANULARITY);
int maxKey = (int) Math.round(NormalDist.MAXZSCORE / NormalDist.GRANULARITY);
int offset = -minKey;
for (int i = minKey; i <= maxKey; i ++) {
double zscore = i * NormalDist.GRANULARITY;
LUT[i+offset] = dist.cumulativeProbability(zscore);
}
assertEquals(NormalDist.CDF_LUT.length, LUT.length);
for (int i = 0; i < LUT.length; i++) {
assertEquals(NormalDist.CDF_LUT[i], LUT[i], 0.001);
}
}
示例6: densityPruning
import org.apache.commons.math3.distribution.NormalDistribution; //導入方法依賴的package包/類
/**
* Estimating the size of a context
* The Null Hypothesis is that density(c) >= minDensity
*
* @param c
* @param minDensity
* @return true if the estimation > minSize
*/
private boolean densityPruning(Context c, double minDensity) {
if (densityPruning == false)
return false;
int sampleSize = globalSample.size();
int sampleHit = c.getSample().size();
double estimatedDensity = (double) sampleHit / sampleSize;
double sampleSD = Math.sqrt(minDensity * (1 - minDensity) / sampleSize);
double zScore = (estimatedDensity - minDensity) / sampleSD;
NormalDistribution unitNormal = new NormalDistribution(0d, 1d);
double pValue = unitNormal.cumulativeProbability(zScore);
if (pValue <= alpha) {
return true;
} else {
//fail to reject
return false;
}
}
示例7: compute
import org.apache.commons.math3.distribution.NormalDistribution; //導入方法依賴的package包/類
/**
* Compute the (Naive) Merton Distance-to-Default measure for an agent
* in a specified forecast timeframe T.
*
* @param debtFaceValue (F)
* The face value of the agent debt.
* @param equityVolatility
* The volatility of agent equity.
* @param equity (E)
* The current agent equity.
* @param expectedAssetReturn
* The asset return of the agent during the last forecast window.
* @param forecastHorizon (T)
* The period over which to forecast agent default.
* @return
* A Pair<Double, Double> in the format:
* Pair<Naive Merton Distance-to-Default, Naive Merton
* Probability-of-Default>, in the period of the forecast timeframe.
*
* It is not permissible for: both the debt face value (F) and equity (E)
* aguments to be simultaneously zero; for the debt face value (F) to be
* negative; or for the forecase horizon (T) to be zero or negative. If the
* debt face value is zero and equity is nonzero, then the distance to
* default is taken to be +Infinity.
*/
static Pair<Double, Double> compute(
final double debtFaceValue,
final double equityVolatility,
final double equity,
final double expectedAssetReturn,
final double forecastHorizon
) {
Preconditions.checkArgument(equity != 0. || debtFaceValue > 0.);
Preconditions.checkArgument(forecastHorizon > 0.);
Preconditions.checkArgument(debtFaceValue >= 0.);
final double
debtVolatility = .05 + .25 * equityVolatility,
overallValueVolatility =
equityVolatility * equity / (equity + debtFaceValue) +
debtVolatility * debtFaceValue / (equity + debtFaceValue);
double
distanceToDefault = Math.log((equity + debtFaceValue)/debtFaceValue) +
(expectedAssetReturn - .5 * overallValueVolatility * overallValueVolatility) *
forecastHorizon;
distanceToDefault /= Math.sqrt(forecastHorizon) * overallValueVolatility;
NormalDistribution normalDist = new NormalDistribution();
final double
defaultProbability = normalDist.cumulativeProbability(-distanceToDefault);
return Pair.create(distanceToDefault, defaultProbability);
}
示例8: calculateAsymptoticPValue
import org.apache.commons.math3.distribution.NormalDistribution; //導入方法依賴的package包/類
/**
* @param Wmin smallest Wilcoxon signed rank value
* @param N number of subjects (corresponding to x.length)
* @return two-sided asymptotic p-value
*/
private double calculateAsymptoticPValue(final double Wmin, final int N) {
final double ES = (double) (N * (N + 1)) / 4.0;
/* Same as (but saves computations):
* final double VarW = ((double) (N * (N + 1) * (2*N + 1))) / 24;
*/
final double VarS = ES * ((double) (2 * N + 1) / 6.0);
// - 0.5 is a continuity correction
final double z = (Wmin - ES - 0.5) / FastMath.sqrt(VarS);
final NormalDistribution standardNormal = new NormalDistribution(0, 1);
return 2*standardNormal.cumulativeProbability(z);
}
示例9: calculateAsymptoticPValue
import org.apache.commons.math3.distribution.NormalDistribution; //導入方法依賴的package包/類
/**
* @param Umin smallest Mann-Whitney U value
* @param n1 number of subjects in first sample
* @param n2 number of subjects in second sample
* @return two-sided asymptotic p-value
* @throws ConvergenceException if the p-value can not be computed
* due to a convergence error
* @throws MaxCountExceededException if the maximum number of
* iterations is exceeded
*/
private double calculateAsymptoticPValue(final double Umin,
final int n1,
final int n2)
throws ConvergenceException, MaxCountExceededException {
/* long multiplication to avoid overflow (double not used due to efficiency
* and to avoid precision loss)
*/
final long n1n2prod = (long) n1 * n2;
// http://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U#Normal_approximation
final double EU = n1n2prod / 2.0;
final double VarU = n1n2prod * (n1 + n2 + 1) / 12.0;
final double z = (Umin - EU) / FastMath.sqrt(VarU);
final NormalDistribution standardNormal = new NormalDistribution(0, 1);
return 2 * standardNormal.cumulativeProbability(z);
}
示例10: calculateAsymptoticPValue
import org.apache.commons.math3.distribution.NormalDistribution; //導入方法依賴的package包/類
/**
* @param Wmin smallest Wilcoxon signed rank value
* @param N number of subjects (corresponding to x.length)
* @return two-sided asymptotic p-value
*/
private double calculateAsymptoticPValue(final double Wmin, final int N) {
final double ES = (double) (N * (N + 1)) / 4.0;
/* Same as (but saves computations):
* final double VarW = ((double) (N * (N + 1) * (2*N + 1))) / 24;
*/
final double VarS = ES * ((double) (2 * N + 1) / 6.0);
// - 0.5 is a continuity correction
final double z = (Wmin - ES - 0.5) / FastMath.sqrt(VarS);
// No try-catch or advertised exception because args are valid
final NormalDistribution standardNormal = new NormalDistribution(0, 1);
return 2*standardNormal.cumulativeProbability(z);
}
示例11: calculateAsymptoticPValue
import org.apache.commons.math3.distribution.NormalDistribution; //導入方法依賴的package包/類
/**
* @param Umin smallest Mann-Whitney U value
* @param n1 number of subjects in first sample
* @param n2 number of subjects in second sample
* @return two-sided asymptotic p-value
* @throws ConvergenceException if the p-value can not be computed
* due to a convergence error
* @throws MaxCountExceededException if the maximum number of
* iterations is exceeded
*/
private double calculateAsymptoticPValue(final double Umin,
final int n1,
final int n2)
throws ConvergenceException, MaxCountExceededException {
/* long multiplication to avoid overflow (double not used due to efficiency
* and to avoid precision loss)
*/
final long n1n2prod = (long) n1 * n2;
// http://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U#Normal_approximation
final double EU = n1n2prod / 2.0;
final double VarU = n1n2prod * (n1 + n2 + 1) / 12.0;
final double z = (Umin - EU) / FastMath.sqrt(VarU);
// No try-catch or advertised exception because args are valid
final NormalDistribution standardNormal = new NormalDistribution(0, 1);
return 2 * standardNormal.cumulativeProbability(z);
}
示例12: determineSignificance
import org.apache.commons.math3.distribution.NormalDistribution; //導入方法依賴的package包/類
/**
* Determines the significance for the given {@link Itemset} by modeling the background normal distribution.
*
* @param itemset The {@link Itemset} for which the significance should be calculated.
*/
private void determineSignificance(Itemset<LabelType> itemset) {
double[] values = backgroundDistributions.get(itemset).getObservations().stream()
.mapToDouble(Double::doubleValue).toArray();
// model normal distribution
DescriptiveStatistics descriptiveStatistics = new DescriptiveStatistics(values);
double mean = descriptiveStatistics.getMean();
double standardDeviation = descriptiveStatistics.getStandardDeviation();
NormalDistribution normalDistribution = new NormalDistribution(mean, standardDeviation);
// calculate KS p-value to estimate quality of fit
double ks = TestUtils.kolmogorovSmirnovTest(normalDistribution, values, false);
if (ks < ksCutoff) {
logger.warn("itemset {} background distribution of type {} violates KS-cutoff, skipping", itemset, type);
return;
}
double pValue = Double.NaN;
if (type == SignificanceEstimatorType.COHESION) {
pValue = normalDistribution.cumulativeProbability(itemset.getCohesion());
} else if (type == SignificanceEstimatorType.CONSENSUS) {
pValue = normalDistribution.cumulativeProbability(itemset.getConsensus());
} else if (type == SignificanceEstimatorType.AFFINITY) {
pValue = normalDistribution.cumulativeProbability(itemset.getAffinity());
}
logger.debug("p-value for itemset {} is {}", itemset.toSimpleString(), pValue);
if (pValue < significanceCutoff) {
Significance significance = new Significance(pValue, ks);
significantItemsets.put(significance, itemset);
logger.info("itemset {} is significant with {}", itemset.toSimpleString(), significance);
}
}
示例13: solveNormalNewsvendor
import org.apache.commons.math3.distribution.NormalDistribution; //導入方法依賴的package包/類
public static Newsvendor solveNormalNewsvendor (final double price, final double cost, final double mu, final double sigma) {
final NormalDistribution dist = new NormalDistribution();
return new Newsvendor(price,cost) {{
_safetyfactor = dist.inverseCumulativeProbability((price-cost)/price);
_quantity = mu+sigma*_safetyfactor;
_profit = (price-cost)*mu - price*sigma*dist.density(_safetyfactor);
}
@Override
public double getProfit(double quantity) {
double z = (quantity-mu)/sigma;
double lostSales = sigma*(dist.density(z)-z*(1-dist.cumulativeProbability(z)));
return _price*mu -_cost*quantity - _price*lostSales;
}
};
}
示例14: generateExpectedPatientsMap
import org.apache.commons.math3.distribution.NormalDistribution; //導入方法依賴的package包/類
private void generateExpectedPatientsMap() {
NormalDistribution xND = new NormalDistribution(MAP_SIZE.getLeft() / 2, MAP_SIZE.getLeft() / 4);
NormalDistribution yND = new NormalDistribution(MAP_SIZE.getRight() / 2, MAP_SIZE.getRight() / 4);
for (int x = 0; x < MAP_SIZE.getLeft(); x++)
for (int y = 0; y < MAP_SIZE.getRight(); y++) {
double xProb = xND.cumulativeProbability(x) - xND.cumulativeProbability(x - 1);
double nX = xProb * MAP_SIZE.getLeft() * MAP_SIZE.getRight();
double yProb = xND.cumulativeProbability(y) - xND.cumulativeProbability(y - 1);
int nXY = (int) Math.round(yProb * nX);
this.expectedPatientsMap.setValue(x, y, nXY);
}
}
示例15: alignPeakPeaks
import org.apache.commons.math3.distribution.NormalDistribution; //導入方法依賴的package包/類
double alignPeakPeaks(Map.Entry peak, HashMap peaks, double deviation)
{
NormalDistribution d = new NormalDistribution();
double mass = (Double) peak.getKey();
double maxprob = 0;
for (Object p : peaks.keySet())
{
double massCand = (Double) p;
double z = Math.abs(mass - massCand)/deviation;
double prob = 1 - d.cumulativeProbability(-z,z);
if (prob > maxprob)
maxprob = prob;
}
return maxprob;
}