本文整理匯總了Java中java.awt.geom.AffineTransform.getShearX方法的典型用法代碼示例。如果您正苦於以下問題:Java AffineTransform.getShearX方法的具體用法?Java AffineTransform.getShearX怎麽用?Java AffineTransform.getShearX使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類java.awt.geom.AffineTransform
的用法示例。
在下文中一共展示了AffineTransform.getShearX方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: concatfix
import java.awt.geom.AffineTransform; //導入方法依賴的package包/類
public void concatfix(AffineTransform at) {
double m00 = at.getScaleX();
double m10 = at.getShearY();
double m01 = at.getShearX();
double m11 = at.getScaleY();
double m02 = at.getTranslateX();
double m12 = at.getTranslateY();
if (Math.abs(m00-1.0) < 1E-10) m00 = 1.0;
if (Math.abs(m11-1.0) < 1E-10) m11 = 1.0;
if (Math.abs(m02) < 1E-10) m02 = 0.0;
if (Math.abs(m12) < 1E-10) m12 = 0.0;
if (Math.abs(m01) < 1E-15) m01 = 0.0;
if (Math.abs(m10) < 1E-15) m10 = 0.0;
at.setTransform(m00, m10,
m01, m11,
m02, m12);
}
示例2: deltaTransformConsumer
import java.awt.geom.AffineTransform; //導入方法依賴的package包/類
DPathConsumer2D deltaTransformConsumer(DPathConsumer2D out,
AffineTransform at)
{
if (at == null) {
return out;
}
double mxx = at.getScaleX();
double mxy = at.getShearX();
double myx = at.getShearY();
double myy = at.getScaleY();
if (mxy == 0.0d && myx == 0.0d) {
if (mxx == 1.0d && myy == 1.0d) {
return out;
} else {
return dt_DeltaScaleFilter.init(out, mxx, myy);
}
} else {
return dt_DeltaTransformFilter.init(out, mxx, mxy, myx, myy);
}
}
示例3: inverseDeltaTransformConsumer
import java.awt.geom.AffineTransform; //導入方法依賴的package包/類
public static PathConsumer2D
inverseDeltaTransformConsumer(PathConsumer2D out,
AffineTransform at)
{
if (at == null) {
return out;
}
float Mxx = (float) at.getScaleX();
float Mxy = (float) at.getShearX();
float Myx = (float) at.getShearY();
float Myy = (float) at.getScaleY();
if (Mxy == 0f && Myx == 0f) {
if (Mxx == 1f && Myy == 1f) {
return out;
} else {
return new DeltaScaleFilter(out, 1.0f/Mxx, 1.0f/Myy);
}
} else {
float det = Mxx * Myy - Mxy * Myx;
return new DeltaTransformFilter(out,
Myy / det,
-Mxy / det,
-Myx / det,
Mxx / det);
}
}
示例4: inverseDeltaTransformConsumer
import java.awt.geom.AffineTransform; //導入方法依賴的package包/類
PathConsumer2D inverseDeltaTransformConsumer(PathConsumer2D out,
AffineTransform at)
{
if (at == null) {
return out;
}
float mxx = (float) at.getScaleX();
float mxy = (float) at.getShearX();
float myx = (float) at.getShearY();
float myy = (float) at.getScaleY();
if (mxy == 0.0f && myx == 0.0f) {
if (mxx == 1.0f && myy == 1.0f) {
return out;
} else {
return iv_DeltaScaleFilter.init(out, 1.0f/mxx, 1.0f/myy);
}
} else {
float det = mxx * myy - mxy * myx;
return iv_DeltaTransformFilter.init(out,
myy / det,
-mxy / det,
-myx / det,
mxx / det);
}
}
示例5: transformConsumer
import java.awt.geom.AffineTransform; //導入方法依賴的package包/類
public static PathConsumer2D
transformConsumer(PathConsumer2D out,
AffineTransform at)
{
if (at == null) {
return out;
}
float Mxx = (float) at.getScaleX();
float Mxy = (float) at.getShearX();
float Mxt = (float) at.getTranslateX();
float Myx = (float) at.getShearY();
float Myy = (float) at.getScaleY();
float Myt = (float) at.getTranslateY();
if (Mxy == 0f && Myx == 0f) {
if (Mxx == 1f && Myy == 1f) {
if (Mxt == 0f && Myt == 0f) {
return out;
} else {
return new TranslateFilter(out, Mxt, Myt);
}
} else {
if (Mxt == 0f && Myt == 0f) {
return new DeltaScaleFilter(out, Mxx, Myy);
} else {
return new ScaleFilter(out, Mxx, Myy, Mxt, Myt);
}
}
} else if (Mxt == 0f && Myt == 0f) {
return new DeltaTransformFilter(out, Mxx, Mxy, Myx, Myy);
} else {
return new TransformFilter(out, Mxx, Mxy, Mxt, Myx, Myy, Myt);
}
}
示例6: isIdentity
import java.awt.geom.AffineTransform; //導入方法依賴的package包/類
public static boolean isIdentity(AffineTransform at) {
return (at.getScaleX() == 1 &&
at.getScaleY() == 1 &&
at.getShearX() == 0 &&
at.getShearY() == 0 &&
at.getTranslateX() == 0 &&
at.getTranslateY() == 0);
}
示例7: userSpaceLineWidth
import java.awt.geom.AffineTransform; //導入方法依賴的package包/類
private float userSpaceLineWidth(AffineTransform at, float lw) {
double widthScale;
if ((at.getType() & (AffineTransform.TYPE_GENERAL_TRANSFORM |
AffineTransform.TYPE_GENERAL_SCALE)) != 0) {
widthScale = Math.sqrt(at.getDeterminant());
} else {
/* First calculate the "maximum scale" of this transform. */
double A = at.getScaleX(); // m00
double C = at.getShearX(); // m01
double B = at.getShearY(); // m10
double D = at.getScaleY(); // m11
/*
* Given a 2 x 2 affine matrix [ A B ] such that
* [ C D ]
* v' = [x' y'] = [Ax + Cy, Bx + Dy], we want to
* find the maximum magnitude (norm) of the vector v'
* with the constraint (x^2 + y^2 = 1).
* The equation to maximize is
* |v'| = sqrt((Ax+Cy)^2+(Bx+Dy)^2)
* or |v'| = sqrt((AA+BB)x^2 + 2(AC+BD)xy + (CC+DD)y^2).
* Since sqrt is monotonic we can maximize |v'|^2
* instead and plug in the substitution y = sqrt(1 - x^2).
* Trigonometric equalities can then be used to get
* rid of most of the sqrt terms.
*/
double EA = A*A + B*B; // x^2 coefficient
double EB = 2*(A*C + B*D); // xy coefficient
double EC = C*C + D*D; // y^2 coefficient
/*
* There is a lot of calculus omitted here.
*
* Conceptually, in the interests of understanding the
* terms that the calculus produced we can consider
* that EA and EC end up providing the lengths along
* the major axes and the hypot term ends up being an
* adjustment for the additional length along the off-axis
* angle of rotated or sheared ellipses as well as an
* adjustment for the fact that the equation below
* averages the two major axis lengths. (Notice that
* the hypot term contains a part which resolves to the
* difference of these two axis lengths in the absence
* of rotation.)
*
* In the calculus, the ratio of the EB and (EA-EC) terms
* ends up being the tangent of 2*theta where theta is
* the angle that the long axis of the ellipse makes
* with the horizontal axis. Thus, this equation is
* calculating the length of the hypotenuse of a triangle
* along that axis.
*/
double hypot = Math.sqrt(EB*EB + (EA-EC)*(EA-EC));
/* sqrt omitted, compare to squared limits below. */
double widthsquared = ((EA + EC + hypot)/2.0);
widthScale = Math.sqrt(widthsquared);
}
return (float) (lw / widthScale);
}
示例8: setTexturePaint
import java.awt.geom.AffineTransform; //導入方法依賴的package包/類
/**
* We use OpenGL's texture coordinate generator to automatically
* map the TexturePaint image to the geometry being rendered. The
* generator uses two separate plane equations that take the (x,y)
* location (in device space) of the fragment being rendered to
* calculate (u,v) texture coordinates for that fragment:
* u = Ax + By + Cz + Dw
* v = Ex + Fy + Gz + Hw
*
* Since we use a 2D orthographic projection, we can assume that z=0
* and w=1 for any fragment. So we need to calculate appropriate
* values for the plane equation constants (A,B,D) and (E,F,H) such
* that {u,v}=0 for the top-left of the TexturePaint's anchor
* rectangle and {u,v}=1 for the bottom-right of the anchor rectangle.
* We can easily make the texture image repeat for {u,v} values
* outside the range [0,1] by specifying the GL_REPEAT texture wrap
* mode.
*
* Calculating the plane equation constants is surprisingly simple.
* We can think of it as an inverse matrix operation that takes
* device space coordinates and transforms them into user space
* coordinates that correspond to a location relative to the anchor
* rectangle. First, we translate and scale the current user space
* transform by applying the anchor rectangle bounds. We then take
* the inverse of this affine transform. The rows of the resulting
* inverse matrix correlate nicely to the plane equation constants
* we were seeking.
*/
private static void setTexturePaint(RenderQueue rq,
SunGraphics2D sg2d,
TexturePaint paint,
boolean useMask)
{
BufferedImage bi = paint.getImage();
SurfaceData dstData = sg2d.surfaceData;
SurfaceData srcData =
dstData.getSourceSurfaceData(bi, SunGraphics2D.TRANSFORM_ISIDENT,
CompositeType.SrcOver, null);
boolean filter =
(sg2d.interpolationType !=
AffineTransformOp.TYPE_NEAREST_NEIGHBOR);
// calculate plane equation constants
AffineTransform at = (AffineTransform)sg2d.transform.clone();
Rectangle2D anchor = paint.getAnchorRect();
at.translate(anchor.getX(), anchor.getY());
at.scale(anchor.getWidth(), anchor.getHeight());
double xp0, xp1, xp3, yp0, yp1, yp3;
try {
at.invert();
xp0 = at.getScaleX();
xp1 = at.getShearX();
xp3 = at.getTranslateX();
yp0 = at.getShearY();
yp1 = at.getScaleY();
yp3 = at.getTranslateY();
} catch (java.awt.geom.NoninvertibleTransformException e) {
xp0 = xp1 = xp3 = yp0 = yp1 = yp3 = 0.0;
}
// assert rq.lock.isHeldByCurrentThread();
rq.ensureCapacityAndAlignment(68, 12);
RenderBuffer buf = rq.getBuffer();
buf.putInt(SET_TEXTURE_PAINT);
buf.putInt(useMask ? 1 : 0);
buf.putInt(filter ? 1 : 0);
buf.putLong(srcData.getNativeOps());
buf.putDouble(xp0).putDouble(xp1).putDouble(xp3);
buf.putDouble(yp0).putDouble(yp1).putDouble(yp3);
}
示例9: drawRectangle
import java.awt.geom.AffineTransform; //導入方法依賴的package包/類
public void drawRectangle(SunGraphics2D sg2d,
double rx, double ry,
double rw, double rh,
double lw)
{
double px, py;
double dx1, dy1, dx2, dy2;
double lw1, lw2;
AffineTransform txform = sg2d.transform;
dx1 = txform.getScaleX();
dy1 = txform.getShearY();
dx2 = txform.getShearX();
dy2 = txform.getScaleY();
px = rx * dx1 + ry * dx2 + txform.getTranslateX();
py = rx * dy1 + ry * dy2 + txform.getTranslateY();
// lw along dx1,dy1 scale by transformed length of dx2,dy2 vectors
// and vice versa
lw1 = len(dx1, dy1) * lw;
lw2 = len(dx2, dy2) * lw;
dx1 *= rw;
dy1 *= rw;
dx2 *= rh;
dy2 *= rh;
if (sg2d.strokeState < SunGraphics2D.STROKE_CUSTOM &&
sg2d.strokeHint != SunHints.INTVAL_STROKE_PURE)
{
double newx = normalize(px);
double newy = normalize(py);
dx1 = normalize(px + dx1) - newx;
dy1 = normalize(py + dy1) - newy;
dx2 = normalize(px + dx2) - newx;
dy2 = normalize(py + dy2) - newy;
px = newx;
py = newy;
}
lw1 = Math.max(lw1, minPenSize);
lw2 = Math.max(lw2, minPenSize);
double len1 = len(dx1, dy1);
double len2 = len(dx2, dy2);
if (lw1 >= len1 || lw2 >= len2) {
// The line widths are large enough to consume the
// entire hole in the middle of the parallelogram
// so we can just fill the outer parallelogram.
fillOuterParallelogram(sg2d,
rx, ry, rx+rw, ry+rh,
px, py, dx1, dy1, dx2, dy2,
len1, len2, lw1, lw2);
} else {
outrenderer.drawParallelogram(sg2d,
rx, ry, rx+rw, ry+rh,
px, py, dx1, dy1, dx2, dy2,
lw1 / len1, lw2 / len2);
}
}
示例10: equalNonTranslateTX
import java.awt.geom.AffineTransform; //導入方法依賴的package包/類
private static boolean equalNonTranslateTX(AffineTransform lhs, AffineTransform rhs) {
return lhs.getScaleX() == rhs.getScaleX() &&
lhs.getShearY() == rhs.getShearY() &&
lhs.getShearX() == rhs.getShearX() &&
lhs.getScaleY() == rhs.getScaleY();
}
示例11: userSpaceLineWidth
import java.awt.geom.AffineTransform; //導入方法依賴的package包/類
private final double userSpaceLineWidth(AffineTransform at, double lw) {
double widthScale;
if (at == null) {
widthScale = 1.0d;
} else if ((at.getType() & (AffineTransform.TYPE_GENERAL_TRANSFORM |
AffineTransform.TYPE_GENERAL_SCALE)) != 0) {
widthScale = Math.sqrt(at.getDeterminant());
} else {
// First calculate the "maximum scale" of this transform.
double A = at.getScaleX(); // m00
double C = at.getShearX(); // m01
double B = at.getShearY(); // m10
double D = at.getScaleY(); // m11
/*
* Given a 2 x 2 affine matrix [ A B ] such that
* [ C D ]
* v' = [x' y'] = [Ax + Cy, Bx + Dy], we want to
* find the maximum magnitude (norm) of the vector v'
* with the constraint (x^2 + y^2 = 1).
* The equation to maximize is
* |v'| = sqrt((Ax+Cy)^2+(Bx+Dy)^2)
* or |v'| = sqrt((AA+BB)x^2 + 2(AC+BD)xy + (CC+DD)y^2).
* Since sqrt is monotonic we can maximize |v'|^2
* instead and plug in the substitution y = sqrt(1 - x^2).
* Trigonometric equalities can then be used to get
* rid of most of the sqrt terms.
*/
double EA = A*A + B*B; // x^2 coefficient
double EB = 2.0d * (A*C + B*D); // xy coefficient
double EC = C*C + D*D; // y^2 coefficient
/*
* There is a lot of calculus omitted here.
*
* Conceptually, in the interests of understanding the
* terms that the calculus produced we can consider
* that EA and EC end up providing the lengths along
* the major axes and the hypot term ends up being an
* adjustment for the additional length along the off-axis
* angle of rotated or sheared ellipses as well as an
* adjustment for the fact that the equation below
* averages the two major axis lengths. (Notice that
* the hypot term contains a part which resolves to the
* difference of these two axis lengths in the absence
* of rotation.)
*
* In the calculus, the ratio of the EB and (EA-EC) terms
* ends up being the tangent of 2*theta where theta is
* the angle that the long axis of the ellipse makes
* with the horizontal axis. Thus, this equation is
* calculating the length of the hypotenuse of a triangle
* along that axis.
*/
double hypot = Math.sqrt(EB*EB + (EA-EC)*(EA-EC));
// sqrt omitted, compare to squared limits below.
double widthsquared = ((EA + EC + hypot) / 2.0d);
widthScale = Math.sqrt(widthsquared);
}
return (lw / widthScale);
}
示例12: userSpaceLineWidth
import java.awt.geom.AffineTransform; //導入方法依賴的package包/類
private final float userSpaceLineWidth(AffineTransform at, float lw) {
float widthScale;
if (at == null) {
widthScale = 1.0f;
} else if ((at.getType() & (AffineTransform.TYPE_GENERAL_TRANSFORM |
AffineTransform.TYPE_GENERAL_SCALE)) != 0) {
widthScale = (float)Math.sqrt(at.getDeterminant());
} else {
// First calculate the "maximum scale" of this transform.
double A = at.getScaleX(); // m00
double C = at.getShearX(); // m01
double B = at.getShearY(); // m10
double D = at.getScaleY(); // m11
/*
* Given a 2 x 2 affine matrix [ A B ] such that
* [ C D ]
* v' = [x' y'] = [Ax + Cy, Bx + Dy], we want to
* find the maximum magnitude (norm) of the vector v'
* with the constraint (x^2 + y^2 = 1).
* The equation to maximize is
* |v'| = sqrt((Ax+Cy)^2+(Bx+Dy)^2)
* or |v'| = sqrt((AA+BB)x^2 + 2(AC+BD)xy + (CC+DD)y^2).
* Since sqrt is monotonic we can maximize |v'|^2
* instead and plug in the substitution y = sqrt(1 - x^2).
* Trigonometric equalities can then be used to get
* rid of most of the sqrt terms.
*/
double EA = A*A + B*B; // x^2 coefficient
double EB = 2.0d * (A*C + B*D); // xy coefficient
double EC = C*C + D*D; // y^2 coefficient
/*
* There is a lot of calculus omitted here.
*
* Conceptually, in the interests of understanding the
* terms that the calculus produced we can consider
* that EA and EC end up providing the lengths along
* the major axes and the hypot term ends up being an
* adjustment for the additional length along the off-axis
* angle of rotated or sheared ellipses as well as an
* adjustment for the fact that the equation below
* averages the two major axis lengths. (Notice that
* the hypot term contains a part which resolves to the
* difference of these two axis lengths in the absence
* of rotation.)
*
* In the calculus, the ratio of the EB and (EA-EC) terms
* ends up being the tangent of 2*theta where theta is
* the angle that the long axis of the ellipse makes
* with the horizontal axis. Thus, this equation is
* calculating the length of the hypotenuse of a triangle
* along that axis.
*/
double hypot = Math.sqrt(EB*EB + (EA-EC)*(EA-EC));
// sqrt omitted, compare to squared limits below.
double widthsquared = ((EA + EC + hypot) / 2.0d);
widthScale = (float)Math.sqrt(widthsquared);
}
return (lw / widthScale);
}