當前位置: 首頁>>代碼示例>>Java>>正文


Java AffineTransform.TYPE_GENERAL_TRANSFORM屬性代碼示例

本文整理匯總了Java中java.awt.geom.AffineTransform.TYPE_GENERAL_TRANSFORM屬性的典型用法代碼示例。如果您正苦於以下問題:Java AffineTransform.TYPE_GENERAL_TRANSFORM屬性的具體用法?Java AffineTransform.TYPE_GENERAL_TRANSFORM怎麽用?Java AffineTransform.TYPE_GENERAL_TRANSFORM使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在java.awt.geom.AffineTransform的用法示例。


在下文中一共展示了AffineTransform.TYPE_GENERAL_TRANSFORM屬性的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: needToCopyBgColorImage

/**
 * Return true if drawing <code>img</code> will
 * invoke a Java2D bug (#4258675). The bug in question
 * occurs when a draw image call with a background color
 * parameter tries to render a sheared
 * or rotated image. The portions of the bounding
 * rectangle not covered by the sheared image
 * are incorrectly drawn with the background color.
 */
private boolean needToCopyBgColorImage(Image img) {

    boolean needToCopy;

    AffineTransform transform = getTransform();

    return (transform.getType()
            & (AffineTransform.TYPE_GENERAL_ROTATION
               | AffineTransform.TYPE_GENERAL_TRANSFORM)) != 0;
}
 
開發者ID:SunburstApps,項目名稱:OpenJSharp,代碼行數:19,代碼來源:ProxyGraphics2D.java

示例2: platformFontCount

@Override
protected int platformFontCount(Font font, String str) {

    AffineTransform deviceTransform = getTransform();
    AffineTransform fontTransform = new AffineTransform(deviceTransform);
    fontTransform.concatenate(getFont().getTransform());
    int transformType = fontTransform.getType();

    /* Test if GDI can handle the transform */
    boolean directToGDI = ((transformType !=
                           AffineTransform.TYPE_GENERAL_TRANSFORM)
                           && ((transformType & AffineTransform.TYPE_FLIP)
                               == 0));

    if (!directToGDI) {
        return 0;
    }

    /* Since all windows fonts are available, and the JRE fonts
     * are also registered. Only the Font.createFont() case is presently
     * unknown to GDI. Those can be registered too, although that
     * code does not exist yet, it can be added too, so we should not
     * fail that case. Just do a quick check whether its a TrueTypeFont
     * - ie not a Type1 font etc, and let drawString() resolve the rest.
     */
    Font2D font2D = FontUtilities.getFont2D(font);
    if (font2D instanceof CompositeFont ||
        font2D instanceof TrueTypeFont) {
        return 1;
    } else {
        return 0;
    }
}
 
開發者ID:SunburstApps,項目名稱:OpenJSharp,代碼行數:33,代碼來源:WPathGraphics.java

示例3: deviceFillRect

@Override
protected void deviceFillRect(int x, int y, int width, int height,
                              Color color) {
    /*
     * Transform to device coordinates
     */
    AffineTransform deviceTransform = getTransform();

    /* check if rotated or sheared */
    int transformType = deviceTransform.getType();
    boolean usePath =  ((transformType &
                           (AffineTransform.TYPE_GENERAL_ROTATION |
                            AffineTransform.TYPE_GENERAL_TRANSFORM)) != 0);
    if (usePath) {
        fill(new Rectangle2D.Float(x, y, width, height));
        return;
    }

    Point2D.Float tlc_pos = new Point2D.Float(x, y);
    deviceTransform.transform(tlc_pos, tlc_pos);

    Point2D.Float brc_pos = new Point2D.Float(x+width, y+height);
    deviceTransform.transform(brc_pos, brc_pos);

    float deviceWidth = (float) (brc_pos.getX() - tlc_pos.getX());
    float deviceHeight = (float)(brc_pos.getY() - tlc_pos.getY());

    WPrinterJob wPrinterJob = (WPrinterJob) getPrinterJob();
    wPrinterJob.fillRect((float)tlc_pos.getX(), (float)tlc_pos.getY(),
                         deviceWidth, deviceHeight, color);
}
 
開發者ID:AdoptOpenJDK,項目名稱:openjdk-jdk10,代碼行數:31,代碼來源:WPathGraphics.java

示例4: needToCopyBgColorImage

/**
 * Return true if drawing {@code img} will
 * invoke a Java2D bug (#4258675). The bug in question
 * occurs when a draw image call with a background color
 * parameter tries to render a sheared
 * or rotated image. The portions of the bounding
 * rectangle not covered by the sheared image
 * are incorrectly drawn with the background color.
 */
private boolean needToCopyBgColorImage(Image img) {

    boolean needToCopy;

    AffineTransform transform = getTransform();

    return (transform.getType()
            & (AffineTransform.TYPE_GENERAL_ROTATION
               | AffineTransform.TYPE_GENERAL_TRANSFORM)) != 0;
}
 
開發者ID:AdoptOpenJDK,項目名稱:openjdk-jdk10,代碼行數:19,代碼來源:ProxyGraphics2D.java

示例5: userSpaceLineWidth

private float userSpaceLineWidth(AffineTransform at, float lw) {

        double widthScale;

        if ((at.getType() & (AffineTransform.TYPE_GENERAL_TRANSFORM |
                            AffineTransform.TYPE_GENERAL_SCALE)) != 0) {
            widthScale = Math.sqrt(at.getDeterminant());
        } else {
            /* First calculate the "maximum scale" of this transform. */
            double A = at.getScaleX();       // m00
            double C = at.getShearX();       // m01
            double B = at.getShearY();       // m10
            double D = at.getScaleY();       // m11

            /*
             * Given a 2 x 2 affine matrix [ A B ] such that
             *                             [ C D ]
             * v' = [x' y'] = [Ax + Cy, Bx + Dy], we want to
             * find the maximum magnitude (norm) of the vector v'
             * with the constraint (x^2 + y^2 = 1).
             * The equation to maximize is
             *     |v'| = sqrt((Ax+Cy)^2+(Bx+Dy)^2)
             * or  |v'| = sqrt((AA+BB)x^2 + 2(AC+BD)xy + (CC+DD)y^2).
             * Since sqrt is monotonic we can maximize |v'|^2
             * instead and plug in the substitution y = sqrt(1 - x^2).
             * Trigonometric equalities can then be used to get
             * rid of most of the sqrt terms.
             */

            double EA = A*A + B*B;          // x^2 coefficient
            double EB = 2*(A*C + B*D);      // xy coefficient
            double EC = C*C + D*D;          // y^2 coefficient

            /*
             * There is a lot of calculus omitted here.
             *
             * Conceptually, in the interests of understanding the
             * terms that the calculus produced we can consider
             * that EA and EC end up providing the lengths along
             * the major axes and the hypot term ends up being an
             * adjustment for the additional length along the off-axis
             * angle of rotated or sheared ellipses as well as an
             * adjustment for the fact that the equation below
             * averages the two major axis lengths.  (Notice that
             * the hypot term contains a part which resolves to the
             * difference of these two axis lengths in the absence
             * of rotation.)
             *
             * In the calculus, the ratio of the EB and (EA-EC) terms
             * ends up being the tangent of 2*theta where theta is
             * the angle that the long axis of the ellipse makes
             * with the horizontal axis.  Thus, this equation is
             * calculating the length of the hypotenuse of a triangle
             * along that axis.
             */

            double hypot = Math.sqrt(EB*EB + (EA-EC)*(EA-EC));
            /* sqrt omitted, compare to squared limits below. */
            double widthsquared = ((EA + EC + hypot)/2.0);

            widthScale = Math.sqrt(widthsquared);
        }

        return (float) (lw / widthScale);
    }
 
開發者ID:SunburstApps,項目名稱:OpenJSharp,代碼行數:65,代碼來源:PiscesRenderingEngine.java

示例6: invalidateTransform

protected void invalidateTransform() {
    int type = transform.getType();
    int origTransformState = transformState;
    if (type == AffineTransform.TYPE_IDENTITY) {
        transformState = TRANSFORM_ISIDENT;
        transX = transY = 0;
    } else if (type == AffineTransform.TYPE_TRANSLATION) {
        double dtx = transform.getTranslateX();
        double dty = transform.getTranslateY();
        transX = (int) Math.floor(dtx + 0.5);
        transY = (int) Math.floor(dty + 0.5);
        if (dtx == transX && dty == transY) {
            transformState = TRANSFORM_INT_TRANSLATE;
        } else {
            transformState = TRANSFORM_ANY_TRANSLATE;
        }
    } else if ((type & (AffineTransform.TYPE_FLIP |
                        AffineTransform.TYPE_MASK_ROTATION |
                        AffineTransform.TYPE_GENERAL_TRANSFORM)) == 0)
    {
        transformState = TRANSFORM_TRANSLATESCALE;
        transX = transY = 0;
    } else {
        transformState = TRANSFORM_GENERIC;
        transX = transY = 0;
    }

    if (transformState >= TRANSFORM_TRANSLATESCALE ||
        origTransformState >= TRANSFORM_TRANSLATESCALE)
    {
        /* Its only in this case that the previous or current transform
         * was more than a translate that font info is invalidated
         */
        cachedFRC = null;
        this.validFontInfo = false;
        this.fontMetrics = null;
        this.glyphVectorFontInfo = null;

        if (transformState != origTransformState) {
            invalidatePipe();
        }
    }
    if (strokeState != STROKE_CUSTOM) {
        validateBasicStroke((BasicStroke) stroke);
    }
}
 
開發者ID:SunburstApps,項目名稱:OpenJSharp,代碼行數:46,代碼來源:SunGraphics2D.java

示例7: isTransformQuadrantRotated

public static boolean isTransformQuadrantRotated(AffineTransform tr) {
    return ((tr.getType() & (AffineTransform.TYPE_GENERAL_ROTATION |
             AffineTransform.TYPE_GENERAL_TRANSFORM)) == 0);
}
 
開發者ID:SunburstApps,項目名稱:OpenJSharp,代碼行數:4,代碼來源:XRUtils.java

示例8: userSpaceLineWidth

private final double userSpaceLineWidth(AffineTransform at, double lw) {

        double widthScale;

        if (at == null) {
            widthScale = 1.0d;
        } else if ((at.getType() & (AffineTransform.TYPE_GENERAL_TRANSFORM  |
                                    AffineTransform.TYPE_GENERAL_SCALE)) != 0) {
            widthScale = Math.sqrt(at.getDeterminant());
        } else {
            // First calculate the "maximum scale" of this transform.
            double A = at.getScaleX();       // m00
            double C = at.getShearX();       // m01
            double B = at.getShearY();       // m10
            double D = at.getScaleY();       // m11

            /*
             * Given a 2 x 2 affine matrix [ A B ] such that
             *                             [ C D ]
             * v' = [x' y'] = [Ax + Cy, Bx + Dy], we want to
             * find the maximum magnitude (norm) of the vector v'
             * with the constraint (x^2 + y^2 = 1).
             * The equation to maximize is
             *     |v'| = sqrt((Ax+Cy)^2+(Bx+Dy)^2)
             * or  |v'| = sqrt((AA+BB)x^2 + 2(AC+BD)xy + (CC+DD)y^2).
             * Since sqrt is monotonic we can maximize |v'|^2
             * instead and plug in the substitution y = sqrt(1 - x^2).
             * Trigonometric equalities can then be used to get
             * rid of most of the sqrt terms.
             */

            double EA = A*A + B*B;          // x^2 coefficient
            double EB = 2.0d * (A*C + B*D); // xy coefficient
            double EC = C*C + D*D;          // y^2 coefficient

            /*
             * There is a lot of calculus omitted here.
             *
             * Conceptually, in the interests of understanding the
             * terms that the calculus produced we can consider
             * that EA and EC end up providing the lengths along
             * the major axes and the hypot term ends up being an
             * adjustment for the additional length along the off-axis
             * angle of rotated or sheared ellipses as well as an
             * adjustment for the fact that the equation below
             * averages the two major axis lengths.  (Notice that
             * the hypot term contains a part which resolves to the
             * difference of these two axis lengths in the absence
             * of rotation.)
             *
             * In the calculus, the ratio of the EB and (EA-EC) terms
             * ends up being the tangent of 2*theta where theta is
             * the angle that the long axis of the ellipse makes
             * with the horizontal axis.  Thus, this equation is
             * calculating the length of the hypotenuse of a triangle
             * along that axis.
             */

            double hypot = Math.sqrt(EB*EB + (EA-EC)*(EA-EC));
            // sqrt omitted, compare to squared limits below.
            double widthsquared = ((EA + EC + hypot) / 2.0d);

            widthScale = Math.sqrt(widthsquared);
        }

        return (lw / widthScale);
    }
 
開發者ID:AdoptOpenJDK,項目名稱:openjdk-jdk10,代碼行數:67,代碼來源:DMarlinRenderingEngine.java

示例9: userSpaceLineWidth

private final float userSpaceLineWidth(AffineTransform at, float lw) {

        float widthScale;

        if (at == null) {
            widthScale = 1.0f;
        } else if ((at.getType() & (AffineTransform.TYPE_GENERAL_TRANSFORM  |
                                    AffineTransform.TYPE_GENERAL_SCALE)) != 0) {
            widthScale = (float)Math.sqrt(at.getDeterminant());
        } else {
            // First calculate the "maximum scale" of this transform.
            double A = at.getScaleX();       // m00
            double C = at.getShearX();       // m01
            double B = at.getShearY();       // m10
            double D = at.getScaleY();       // m11

            /*
             * Given a 2 x 2 affine matrix [ A B ] such that
             *                             [ C D ]
             * v' = [x' y'] = [Ax + Cy, Bx + Dy], we want to
             * find the maximum magnitude (norm) of the vector v'
             * with the constraint (x^2 + y^2 = 1).
             * The equation to maximize is
             *     |v'| = sqrt((Ax+Cy)^2+(Bx+Dy)^2)
             * or  |v'| = sqrt((AA+BB)x^2 + 2(AC+BD)xy + (CC+DD)y^2).
             * Since sqrt is monotonic we can maximize |v'|^2
             * instead and plug in the substitution y = sqrt(1 - x^2).
             * Trigonometric equalities can then be used to get
             * rid of most of the sqrt terms.
             */

            double EA = A*A + B*B;          // x^2 coefficient
            double EB = 2.0d * (A*C + B*D); // xy coefficient
            double EC = C*C + D*D;          // y^2 coefficient

            /*
             * There is a lot of calculus omitted here.
             *
             * Conceptually, in the interests of understanding the
             * terms that the calculus produced we can consider
             * that EA and EC end up providing the lengths along
             * the major axes and the hypot term ends up being an
             * adjustment for the additional length along the off-axis
             * angle of rotated or sheared ellipses as well as an
             * adjustment for the fact that the equation below
             * averages the two major axis lengths.  (Notice that
             * the hypot term contains a part which resolves to the
             * difference of these two axis lengths in the absence
             * of rotation.)
             *
             * In the calculus, the ratio of the EB and (EA-EC) terms
             * ends up being the tangent of 2*theta where theta is
             * the angle that the long axis of the ellipse makes
             * with the horizontal axis.  Thus, this equation is
             * calculating the length of the hypotenuse of a triangle
             * along that axis.
             */

            double hypot = Math.sqrt(EB*EB + (EA-EC)*(EA-EC));
            // sqrt omitted, compare to squared limits below.
            double widthsquared = ((EA + EC + hypot) / 2.0d);

            widthScale = (float)Math.sqrt(widthsquared);
        }

        return (lw / widthScale);
    }
 
開發者ID:AdoptOpenJDK,項目名稱:openjdk-jdk10,代碼行數:67,代碼來源:MarlinRenderingEngine.java

示例10: getStrike

private FontStrike getStrike(FontStrikeDesc desc, boolean copy) {
    /* Before looking in the map, see if the descriptor matches the
     * last strike returned from this Font2D. This should often be a win
     * since its common for the same font, in the same size to be
     * used frequently, for example in many parts of a UI.
     *
     * If its not the same then we use the descriptor to locate a
     * Reference to the strike. If it exists and points to a strike,
     * then we update the last strike to refer to that and return it.
     *
     * If the key isn't in the map, or its reference object has been
     * collected, then we create a new strike, put it in the map and
     * set it to be the last strike.
     */
    FontStrike strike = lastFontStrike.get();
    if (strike != null && desc.equals(strike.desc)) {
        //strike.lastlookupTime = System.currentTimeMillis();
        return strike;
    } else {
        Reference<FontStrike> strikeRef = strikeCache.get(desc);
        if (strikeRef != null) {
            strike = strikeRef.get();
            if (strike != null) {
                //strike.lastlookupTime = System.currentTimeMillis();
                lastFontStrike = new SoftReference<>(strike);
                StrikeCache.refStrike(strike);
                return strike;
            }
        }
        /* When we create a new FontStrike instance, we *must*
         * ask the StrikeCache for a reference. We must then ensure
         * this reference remains reachable, by storing it in the
         * Font2D's strikeCache map.
         * So long as the Reference is there (reachable) then if the
         * reference is cleared, it will be enqueued for disposal.
         * If for some reason we explicitly remove this reference, it
         * must only be done when holding a strong reference to the
         * referent (the FontStrike), or if the reference is cleared,
         * then we must explicitly "dispose" of the native resources.
         * The only place this currently happens is in this same method,
         * where we find a cleared reference and need to overwrite it
         * here with a new reference.
         * Clearing the whilst holding a strong reference, should only
         * be done if the
         */
        if (copy) {
            desc = new FontStrikeDesc(desc);
        }
        strike = createStrike(desc);
        //StrikeCache.addStrike();
        /* If we are creating many strikes on this font which
         * involve non-quadrant rotations, or more general
         * transforms which include shears, then force the use
         * of weak references rather than soft references.
         * This means that it won't live much beyond the next GC,
         * which is what we want for what is likely a transient strike.
         */
        int txType = desc.glyphTx.getType();
        if (txType == AffineTransform.TYPE_GENERAL_TRANSFORM ||
            (txType & AffineTransform.TYPE_GENERAL_ROTATION) != 0 &&
            strikeCache.size() > 10) {
            strikeRef = StrikeCache.getStrikeRef(strike, true);
        } else {
            strikeRef = StrikeCache.getStrikeRef(strike);
        }
        strikeCache.put(desc, strikeRef);
        //strike.lastlookupTime = System.currentTimeMillis();
        lastFontStrike = new SoftReference<>(strike);
        StrikeCache.refStrike(strike);
        return strike;
    }
}
 
開發者ID:AdoptOpenJDK,項目名稱:openjdk-jdk10,代碼行數:72,代碼來源:Font2D.java


注:本文中的java.awt.geom.AffineTransform.TYPE_GENERAL_TRANSFORM屬性示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。