本文整理匯總了Java中gnu.trove.map.hash.TIntIntHashMap.get方法的典型用法代碼示例。如果您正苦於以下問題:Java TIntIntHashMap.get方法的具體用法?Java TIntIntHashMap.get怎麽用?Java TIntIntHashMap.get使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類gnu.trove.map.hash.TIntIntHashMap
的用法示例。
在下文中一共展示了TIntIntHashMap.get方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: notUseAfterLastDef
import gnu.trove.map.hash.TIntIntHashMap; //導入方法依賴的package包/類
private boolean notUseAfterLastDef(int reg,
MachineBasicBlock mbb,
int dist,
TIntIntHashMap distanceMap,
OutParamWrapper<Integer> lastDef)
{
lastDef.set(0);
int lastUse = dist;
for (DefUseChainIterator itr = mri.getRegIterator(reg); itr.hasNext();)
{
MachineOperand mo = itr.getOpearnd();
MachineInstr mi = itr.getMachineInstr();
if (!mi.getParent().equals(mbb))
continue;
if (!distanceMap.containsKey(mi.index()))
continue;
if (mo.isUse() && distanceMap.get(mi.index()) < lastUse)
lastUse = distanceMap.get(mi.index());
if (mo.isDef() && distanceMap.get(mi.index()) > lastDef.get())
lastDef.set(distanceMap.get(mi.index()));
itr.next();
}
return (!(lastUse > lastDef.get() && lastUse < dist));
}
示例2: train
import gnu.trove.map.hash.TIntIntHashMap; //導入方法依賴的package包/類
@Override
public <O, A> void train(List<? extends Annotated<O, A>> data) {
TIntIntHashMap nAnnotationCounts = new TIntIntHashMap();
int maxVal = 0;
for (Annotated<O, A> sample : data) {
Collection<A> annos = sample.getAnnotations();
nAnnotationCounts.adjustOrPutValue(annos.size(), 1, 1);
if (annos.size()>maxVal) maxVal = annos.size();
}
//build distribution and rng for the number of annotations
double [] distr = new double[maxVal+1];
for (int i=0; i<=maxVal; i++)
distr[i] = nAnnotationCounts.get(i);
numAnnotations = new EmpiricalWalker(distr, Empirical.NO_INTERPOLATION, new MersenneTwister());
}
示例3: isProfitableToReMat
import gnu.trove.map.hash.TIntIntHashMap; //導入方法依賴的package包/類
private boolean isProfitableToReMat(int reg,
TargetRegisterClass rc,
MachineInstr mi,
MachineInstr defMI,
MachineBasicBlock mbb,
int loc,
TIntIntHashMap distanceMap)
{
boolean otherUse = false;
for (DefUseChainIterator itr = mri.getUseIterator(reg); itr.hasNext(); )
{
MachineOperand useMO = itr.getOpearnd();
MachineInstr useMI = itr.getMachineInstr();
MachineBasicBlock useBB = useMI.getParent();
if (useBB.equals(mbb))
{
int idx = useMI.index();
if (distanceMap.containsKey(idx) && distanceMap.get(idx) == loc)
{
otherUse = true;
if (isTwoAddrUse(useMI, reg))
return true;
}
}
}
if (otherUse)
return false;
return mbb.equals(defMI.getParent());
}
示例4: merge
import gnu.trove.map.hash.TIntIntHashMap; //導入方法依賴的package包/類
private void merge(TIntIntHashMap linked, int start, int target) {
if (start == target)
return;
final int old = linked.get(start);
if (old > target) {
linked.put(start, target);
merge(linked, old, target);
} else {
merge(linked, target, old);
}
}
示例5: getCharWidth
import gnu.trove.map.hash.TIntIntHashMap; //導入方法依賴的package包/類
private static int getCharWidth(Font font, char ch, TIntIntHashMap map) {
int width = map.get(ch);
if (width == 0) {
width = Fonts.getFontMetrics(font).charWidth(ch);
if (width == 0) {
width = 1;
}
map.put(ch, width);
}
return width;
}
示例6: get
import gnu.trove.map.hash.TIntIntHashMap; //導入方法依賴的package包/類
public int get(final String groupId, final int timepoint) {
final TIntIntHashMap countResult = countResults.get(groupId);
if (countResult == null) {
return defaultValue;
} else {
return countResult.get(timepoint);
}
}
示例7: buildFeatureVector
import gnu.trove.map.hash.TIntIntHashMap; //導入方法依賴的package包/類
private void buildFeatureVector(int item_id, TIntIntHashMap paths) {
try {
double rate = 0;
double n = 1;
boolean training = false, validation = false;
DecimalFormat form = new DecimalFormat("#.####");
form.setRoundingMode(RoundingMode.CEILING);
StringBuffer str = new StringBuffer();
if (trainRatings.containsKey(item_id)) {
training = true;
rate = trainRatings.get(item_id);
} else if (validationRatings.containsKey(item_id)) {
validation = true;
rate = validationRatings.get(item_id);
}
if (normalize)
n = norm(paths);
str.append(rate + " qid:" + user_id + " 1:" + item_id + " ");
for (int i = 1; i <= path_index.size(); i++) {
int count = 0;
if (paths.size() == 1)
n = norm(paths);
if (paths.containsKey(i)) {
count = paths.get(i);
if (normalize)
str.append(i + 1 + ":"
+ form.format(count / n).replace(",", ".")
+ " ");
else
str.append(i + 1 + ":" + count + " ");
}
}
if (training) {
synchronized (train_file) {
train_file.append(str);
train_file.newLine();
}
} else if (validation) {
synchronized (validation_file) {
validation_file.append(str);
validation_file.newLine();
}
} else {
synchronized (test_file) {
test_file.append(str);
test_file.newLine();
}
}
} catch (Exception e) {
e.printStackTrace();
}
}
示例8: MultinomialHMM
import gnu.trove.map.hash.TIntIntHashMap; //導入方法依賴的package包/類
public MultinomialHMM (int numberOfTopics, String topicsFilename, int numStates) throws IOException {
formatter = NumberFormat.getInstance();
formatter.setMaximumFractionDigits(5);
System.out.println("LDA HMM: " + numberOfTopics);
documentTopics = new TIntObjectHashMap<TIntIntHashMap>();
this.numTopics = numberOfTopics;
this.alphaSum = numberOfTopics;
this.alpha = new double[numberOfTopics];
Arrays.fill(alpha, alphaSum / numTopics);
topicKeys = new String[numTopics];
// This initializes numDocs as well
loadTopicsFromFile(topicsFilename);
documentStates = new int[ numDocs ];
documentSequenceIDs = new int[ numDocs ];
maxTokensPerTopic = new int[ numTopics ];
maxDocLength = 0;
//int[] histogram = new int[380];
//int totalTokens = 0;
for (int doc=0; doc < numDocs; doc++) {
if (! documentTopics.containsKey(doc)) { continue; }
TIntIntHashMap topicCounts = documentTopics.get(doc);
int count = 0;
for (int topic: topicCounts.keys()) {
int topicCount = topicCounts.get(topic);
//histogram[topicCount]++;
//totalTokens += topicCount;
if (topicCount > maxTokensPerTopic[topic]) {
maxTokensPerTopic[topic] = topicCount;
}
count += topicCount;
}
if (count > maxDocLength) {
maxDocLength = count;
}
}
/*
double runningTotal = 0.0;
for (int i=337; i >= 0; i--) {
runningTotal += i * histogram[i];
System.out.format("%d\t%d\t%.3f\n", i, histogram[i],
runningTotal / totalTokens);
}
*/
this.numStates = numStates;
this.initialStateCounts = new int[numStates];
topicLogGammaCache = new double[numStates][numTopics][];
for (int state=0; state < numStates; state++) {
for (int topic=0; topic < numTopics; topic++) {
topicLogGammaCache[state][topic] = new double[ maxTokensPerTopic[topic] + 1 ];
//topicLogGammaCache[state][topic] = new double[21];
}
}
System.out.println( maxDocLength );
docLogGammaCache = new double[numStates][ maxDocLength + 1 ];
}
示例9: sampleTopicsForOneTestDocAll
import gnu.trove.map.hash.TIntIntHashMap; //導入方法依賴的package包/類
private void sampleTopicsForOneTestDocAll(FeatureSequence tokenSequence,
LabelSequence topicSequence) {
// TODO Auto-generated method stub
int[] oneDocTopics = topicSequence.getFeatures();
TIntIntHashMap currentTypeTopicCounts;
int type, oldTopic, newTopic;
double tw;
double[] topicWeights = new double[numTopics];
double topicWeightsSum;
int docLength = tokenSequence.getLength();
// populate topic counts
int[] localTopicCounts = new int[numTopics];
for (int ti = 0; ti < numTopics; ti++){
localTopicCounts[ti] = 0;
}
for (int position = 0; position < docLength; position++) {
localTopicCounts[oneDocTopics[position]] ++;
}
// Iterate over the positions (words) in the document
for (int si = 0; si < docLength; si++) {
type = tokenSequence.getIndexAtPosition(si);
oldTopic = oneDocTopics[si];
// Remove this token from all counts
localTopicCounts[oldTopic] --;
currentTypeTopicCounts = typeTopicCounts[type];
assert(currentTypeTopicCounts.get(oldTopic) >= 0);
if (currentTypeTopicCounts.get(oldTopic) == 1) {
currentTypeTopicCounts.remove(oldTopic);
}
else {
currentTypeTopicCounts.adjustValue(oldTopic, -1);
}
tokensPerTopic[oldTopic]--;
// Build a distribution over topics for this token
Arrays.fill (topicWeights, 0.0);
topicWeightsSum = 0;
for (int ti = 0; ti < numTopics; ti++) {
tw = ((currentTypeTopicCounts.get(ti) + beta) / (tokensPerTopic[ti] + betaSum))
* ((localTopicCounts[ti] + alpha[ti])); // (/docLen-1+tAlpha); is constant across all topics
topicWeightsSum += tw;
topicWeights[ti] = tw;
}
// Sample a topic assignment from this distribution
newTopic = random.nextDiscrete (topicWeights, topicWeightsSum);
// Put that new topic into the counts
oneDocTopics[si] = newTopic;
currentTypeTopicCounts.adjustOrPutValue(newTopic, 1, 1);
localTopicCounts[newTopic] ++;
tokensPerTopic[newTopic]++;
}
}
示例10: sampleTopicsForOneTestDoc
import gnu.trove.map.hash.TIntIntHashMap; //導入方法依賴的package包/類
private void sampleTopicsForOneTestDoc(FeatureSequence tokenSequence,
LabelSequence topicSequence) {
// TODO Auto-generated method stub
int[] oneDocTopics = topicSequence.getFeatures();
TIntIntHashMap currentTypeTopicCounts;
int type, oldTopic, newTopic;
double tw;
double[] topicWeights = new double[numTopics];
double topicWeightsSum;
int docLength = tokenSequence.getLength();
// populate topic counts
int[] localTopicCounts = new int[numTopics];
for (int ti = 0; ti < numTopics; ti++){
localTopicCounts[ti] = 0;
}
for (int position = 0; position < docLength; position++) {
if(oneDocTopics[position] != -1) {
localTopicCounts[oneDocTopics[position]] ++;
}
}
// Iterate over the positions (words) in the document
for (int si = 0; si < docLength; si++) {
type = tokenSequence.getIndexAtPosition(si);
oldTopic = oneDocTopics[si];
if(oldTopic == -1) {
continue;
}
// Remove this token from all counts
localTopicCounts[oldTopic] --;
currentTypeTopicCounts = typeTopicCounts[type];
assert(currentTypeTopicCounts.get(oldTopic) >= 0);
if (currentTypeTopicCounts.get(oldTopic) == 1) {
currentTypeTopicCounts.remove(oldTopic);
}
else {
currentTypeTopicCounts.adjustValue(oldTopic, -1);
}
tokensPerTopic[oldTopic]--;
// Build a distribution over topics for this token
Arrays.fill (topicWeights, 0.0);
topicWeightsSum = 0;
for (int ti = 0; ti < numTopics; ti++) {
tw = ((currentTypeTopicCounts.get(ti) + beta) / (tokensPerTopic[ti] + betaSum))
* ((localTopicCounts[ti] + alpha[ti])); // (/docLen-1+tAlpha); is constant across all topics
topicWeightsSum += tw;
topicWeights[ti] = tw;
}
// Sample a topic assignment from this distribution
newTopic = random.nextDiscrete (topicWeights, topicWeightsSum);
// Put that new topic into the counts
oneDocTopics[si] = newTopic;
currentTypeTopicCounts.adjustOrPutValue(newTopic, 1, 1);
localTopicCounts[newTopic] ++;
tokensPerTopic[newTopic]++;
}
}
示例11: sampleTopicsForOneDocWithTheta
import gnu.trove.map.hash.TIntIntHashMap; //導入方法依賴的package包/類
private void sampleTopicsForOneDocWithTheta(FeatureSequence tokenSequence,
LabelSequence topicSequence, double[] topicDistribution) {
// TODO Auto-generated method stub
int[] oneDocTopics = topicSequence.getFeatures();
TIntIntHashMap currentTypeTopicCounts;
int type, oldTopic, newTopic;
double tw;
double[] topicWeights = new double[numTopics];
double topicWeightsSum;
int docLength = tokenSequence.getLength();
// Iterate over the positions (words) in the document
for (int si = 0; si < docLength; si++) {
type = tokenSequence.getIndexAtPosition(si);
oldTopic = oneDocTopics[si];
if(oldTopic == -1) {
continue;
}
currentTypeTopicCounts = typeTopicCounts[type];
assert(currentTypeTopicCounts.get(oldTopic) >= 0);
if (currentTypeTopicCounts.get(oldTopic) == 1) {
currentTypeTopicCounts.remove(oldTopic);
}
else {
currentTypeTopicCounts.adjustValue(oldTopic, -1);
}
tokensPerTopic[oldTopic]--;
// Build a distribution over topics for this token
Arrays.fill (topicWeights, 0.0);
topicWeightsSum = 0;
for (int ti = 0; ti < numTopics; ti++) {
tw = ((currentTypeTopicCounts.get(ti) + beta) / (tokensPerTopic[ti] + betaSum))
* topicDistribution[ti]; // (/docLen-1+tAlpha); is constant across all topics
topicWeightsSum += tw;
topicWeights[ti] = tw;
}
// Sample a topic assignment from this distribution
newTopic = random.nextDiscrete (topicWeights, topicWeightsSum);
// Put that new topic into the counts
oneDocTopics[si] = newTopic;
currentTypeTopicCounts.adjustOrPutValue(newTopic, 1, 1);
tokensPerTopic[newTopic]++;
}
}
示例12: dirichletMultinomialLikelihoodRatio
import gnu.trove.map.hash.TIntIntHashMap; //導入方法依賴的package包/類
/** What is the probability that these two observations were drawn from
* the same multinomial with symmetric Dirichlet prior alpha, relative
* to the probability that they were drawn from different multinomials
* both drawn from this Dirichlet?
*/
public static double dirichletMultinomialLikelihoodRatio(TIntIntHashMap countsX,
TIntIntHashMap countsY,
double alpha, double alphaSum) {
// The likelihood for one DCM is
// Gamma( alpha_sum ) prod Gamma( alpha + N_i )
// prod Gamma ( alpha ) Gamma ( alpha_sum + N )
// When we divide this by the product of two other DCMs with the same
// alpha parameter, the first term in the numerator cancels with the
// first term in the denominator. Then moving the remaining alpha-only
// term to the numerator, we get
// prod Gamma(alpha) prod Gamma( alpha + X_i + Y_i )
// Gamma (alpha_sum) Gamma( alpha_sum + X_sum + Y_sum )
// ----------------------------------------------------------
// prod Gamma(alpha + X_i) prod Gamma(alpha + Y_i)
// Gamma( alpha_sum + X_sum ) Gamma( alpha_sum + Y_sum )
double logLikelihood = 0.0;
double logGammaAlpha = logGamma(alpha);
int totalX = 0;
int totalY = 0;
int key, x, y;
TIntHashSet distinctKeys = new TIntHashSet();
distinctKeys.addAll(countsX.keys());
distinctKeys.addAll(countsY.keys());
TIntIterator iterator = distinctKeys.iterator();
while (iterator.hasNext()) {
key = iterator.next();
x = 0;
if (countsX.containsKey(key)) {
x = countsX.get(key);
}
y = 0;
if (countsY.containsKey(key)) {
y = countsY.get(key);
}
totalX += x;
totalY += y;
logLikelihood += logGamma(alpha) + logGamma(alpha + x + y)
- logGamma(alpha + x) - logGamma(alpha + y);
}
logLikelihood += logGamma(alphaSum + totalX) + logGamma(alphaSum + totalY)
- logGamma(alphaSum) - logGamma(alphaSum + totalX + totalY);
return logLikelihood;
}
示例13: dirichletMultinomialLikelihoodRatio
import gnu.trove.map.hash.TIntIntHashMap; //導入方法依賴的package包/類
/** What is the probability that these two observations were drawn from
* the same multinomial with symmetric Dirichlet prior alpha, relative
* to the probability that they were drawn from different multinomials
* both drawn from this Dirichlet?
*/
public static double dirichletMultinomialLikelihoodRatio(TIntIntHashMap countsX,
TIntIntHashMap countsY,
double alpha, double alphaSum) {
// The likelihood for one DCM is
// Gamma( alpha_sum ) prod Gamma( alpha + N_i )
// prod Gamma ( alpha ) Gamma ( alpha_sum + N )
// When we divide this by the product of two other DCMs with the same
// alpha parameter, the first term in the numerator cancels with the
// first term in the denominator. Then moving the remaining alpha-only
// term to the numerator, we get
// prod Gamma(alpha) prod Gamma( alpha + X_i + Y_i )
// Gamma (alpha_sum) Gamma( alpha_sum + X_sum + Y_sum )
// ----------------------------------------------------------
// prod Gamma(alpha + X_i) prod Gamma(alpha + Y_i)
// Gamma( alpha_sum + X_sum ) Gamma( alpha_sum + Y_sum )
double logLikelihood = 0.0;
//double logGammaAlpha = logGamma(alpha);
int totalX = 0;
int totalY = 0;
int key, x, y;
TIntHashSet distinctKeys = new TIntHashSet();
distinctKeys.addAll(countsX.keys());
distinctKeys.addAll(countsY.keys());
TIntIterator iterator = distinctKeys.iterator();
while (iterator.hasNext()) {
key = iterator.next();
x = 0;
if (countsX.containsKey(key)) {
x = countsX.get(key);
}
y = 0;
if (countsY.containsKey(key)) {
y = countsY.get(key);
}
totalX += x;
totalY += y;
logLikelihood += logGamma(alpha) + logGamma(alpha + x + y)
- logGamma(alpha + x) - logGamma(alpha + y);
}
logLikelihood += logGamma(alphaSum + totalX) + logGamma(alphaSum + totalY)
- logGamma(alphaSum) - logGamma(alphaSum + totalX + totalY);
return logLikelihood;
}
示例14: dirichletMultinomialLikelihoodRatio
import gnu.trove.map.hash.TIntIntHashMap; //導入方法依賴的package包/類
/**
* What is the probability that these two observations were drawn from the
* same multinomial with symmetric Dirichlet prior alpha, relative to the
* probability that they were drawn from different multinomials both drawn
* from this Dirichlet?
*/
public static double dirichletMultinomialLikelihoodRatio(TIntIntHashMap countsX,
TIntIntHashMap countsY,
double alpha, double alphaSum) {
// The likelihood for one DCM is
// Gamma( alpha_sum ) prod Gamma( alpha + N_i )
// prod Gamma ( alpha ) Gamma ( alpha_sum + N )
// When we divide this by the product of two other DCMs with the same
// alpha parameter, the first term in the numerator cancels with the
// first term in the denominator. Then moving the remaining alpha-only
// term to the numerator, we get
// prod Gamma(alpha) prod Gamma( alpha + X_i + Y_i )
// Gamma (alpha_sum) Gamma( alpha_sum + X_sum + Y_sum )
// ----------------------------------------------------------
// prod Gamma(alpha + X_i) prod Gamma(alpha + Y_i)
// Gamma( alpha_sum + X_sum ) Gamma( alpha_sum + Y_sum )
double logLikelihood = 0.0;
double logGammaAlpha = logGamma(alpha);
int totalX = 0;
int totalY = 0;
int key, x, y;
TIntHashSet distinctKeys = new TIntHashSet();
distinctKeys.addAll(countsX.keys());
distinctKeys.addAll(countsY.keys());
TIntIterator iterator = distinctKeys.iterator();
while (iterator.hasNext()) {
key = iterator.next();
x = 0;
if (countsX.containsKey(key)) {
x = countsX.get(key);
}
y = 0;
if (countsY.containsKey(key)) {
y = countsY.get(key);
}
totalX += x;
totalY += y;
logLikelihood += logGamma(alpha) + logGamma(alpha + x + y)
- logGamma(alpha + x) - logGamma(alpha + y);
}
logLikelihood += logGamma(alphaSum + totalX) + logGamma(alphaSum + totalY)
- logGamma(alphaSum) - logGamma(alphaSum + totalX + totalY);
return logLikelihood;
}