當前位置: 首頁>>代碼示例>>Java>>正文


Java TIntIntHashMap.adjustOrPutValue方法代碼示例

本文整理匯總了Java中gnu.trove.map.hash.TIntIntHashMap.adjustOrPutValue方法的典型用法代碼示例。如果您正苦於以下問題:Java TIntIntHashMap.adjustOrPutValue方法的具體用法?Java TIntIntHashMap.adjustOrPutValue怎麽用?Java TIntIntHashMap.adjustOrPutValue使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在gnu.trove.map.hash.TIntIntHashMap的用法示例。


在下文中一共展示了TIntIntHashMap.adjustOrPutValue方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: pipe

import gnu.trove.map.hash.TIntIntHashMap; //導入方法依賴的package包/類
public Instance pipe(Instance instance) {
	
	TIntIntHashMap localCounter = new TIntIntHashMap();

	if (instance.getData() instanceof FeatureSequence) {
			
		FeatureSequence features = (FeatureSequence) instance.getData();

		for (int position = 0; position < features.size(); position++) {
			localCounter.adjustOrPutValue(features.getIndexAtPosition(position), 1, 1);
		}

	}
	else {
		throw new IllegalArgumentException("Looking for a FeatureSequence, found a " + 
										   instance.getData().getClass());
	}

	for (int feature: localCounter.keys()) {
		counter.increment(feature);
	}

	numInstances++;

	return instance;
}
 
開發者ID:iamxiatian,項目名稱:wikit,代碼行數:27,代碼來源:FeatureDocFreqPipe.java

示例2: train

import gnu.trove.map.hash.TIntIntHashMap; //導入方法依賴的package包/類
@Override
public void train(List<? extends Annotated<OBJECT, ANNOTATION>> data) {
	final HashSet<ANNOTATION> annotationsSet = new HashSet<ANNOTATION>();
	final TIntIntHashMap nAnnotationCounts = new TIntIntHashMap();
	int maxVal = 0;

	for (final Annotated<OBJECT, ANNOTATION> sample : data) {
		final Collection<ANNOTATION> annos = sample.getAnnotations();
		annotationsSet.addAll(annos);
		nAnnotationCounts.adjustOrPutValue(annos.size(), 1, 1);

		if (annos.size() > maxVal)
			maxVal = annos.size();
	}

	annotations = new ArrayList<ANNOTATION>(annotationsSet);

	rnd = new Uniform(0, annotations.size() - 1, new MersenneTwister());

	numAnnotations.train(data);
}
 
開發者ID:openimaj,項目名稱:openimaj,代碼行數:22,代碼來源:UniformRandomAnnotator.java

示例3: train

import gnu.trove.map.hash.TIntIntHashMap; //導入方法依賴的package包/類
@Override
public <O, A> void train(List<? extends Annotated<O, A>> data) {
	TIntIntHashMap nAnnotationCounts = new TIntIntHashMap();
	int maxVal = 0;
	
	for (Annotated<O, A> sample : data) {
		Collection<A> annos = sample.getAnnotations();

		nAnnotationCounts.adjustOrPutValue(annos.size(), 1, 1);
		
		if (annos.size()>maxVal) maxVal = annos.size();
	}
	
	//build distribution and rng for the number of annotations
	double [] distr = new double[maxVal+1];
	for (int i=0; i<=maxVal; i++) 
		distr[i] = nAnnotationCounts.get(i);
	numAnnotations = new EmpiricalWalker(distr, Empirical.NO_INTERPOLATION, new MersenneTwister());
}
 
開發者ID:openimaj,項目名稱:openimaj,代碼行數:20,代碼來源:PriorChooser.java

示例4: findMaxClassCount

import gnu.trove.map.hash.TIntIntHashMap; //導入方法依賴的package包/類
/**
 * @param is
 * @param invCor
 * @return the cluster with the maximum
 */
public static IntIntPair findMaxClassCount(int[] is, Map<Integer, Integer> invCor) {
	TIntIntHashMap classCounts = new TIntIntHashMap();
	int max = 0;
	int c = 0;
	for (int i : is) {
		Integer c_i = invCor.get(i);
		if(c_i == null) continue;
		int count = classCounts.adjustOrPutValue(c_i, 1, 1);
		if(count > max){
			max = count;
			c = c_i;
		}
	}
	return IntIntPair.pair(c, max);
}
 
開發者ID:openimaj,項目名稱:openimaj,代碼行數:21,代碼來源:ClusterAnalyserUtils.java

示例5: processDate

import gnu.trove.map.hash.TIntIntHashMap; //導入方法依賴的package包/類
private void processDate(String thisId, int year) {
  assert(thisId != null);
  if(currentId != null && !currentId.equals(thisId)) {
    flush();
    dateCounts = new TIntIntHashMap();
  }
  currentId = thisId;
  dateCounts.adjustOrPutValue(year, 1, 1);
}
 
開發者ID:jjfiv,項目名稱:ecir2015timebooks,代碼行數:10,代碼來源:DocDatesBuilder.java

示例6: train

import gnu.trove.map.hash.TIntIntHashMap; //導入方法依賴的package包/類
@Override
public void train(List<? extends Annotated<OBJECT, ANNOTATION>> data) {
	final TIntIntHashMap nAnnotationCounts = new TIntIntHashMap();
	final TObjectIntHashMap<ANNOTATION> annotationCounts = new TObjectIntHashMap<ANNOTATION>();
	int maxVal = 0;

	for (final Annotated<OBJECT, ANNOTATION> sample : data) {
		final Collection<ANNOTATION> annos = sample.getAnnotations();

		for (final ANNOTATION s : annos) {
			annotationCounts.adjustOrPutValue(s, 1, 1);
		}

		nAnnotationCounts.adjustOrPutValue(annos.size(), 1, 1);

		if (annos.size() > maxVal)
			maxVal = annos.size();
	}

	// build distribution and rng for each annotation
	annotations = new ArrayList<ANNOTATION>();
	final TDoubleArrayList probs = new TDoubleArrayList();
	annotationCounts.forEachEntry(new TObjectIntProcedure<ANNOTATION>() {
		@Override
		public boolean execute(ANNOTATION a, int b) {
			annotations.add(a);
			probs.add(b);
			return true;
		}
	});
	annotationProbability = new EmpiricalWalker(probs.toArray(), Empirical.NO_INTERPOLATION, new MersenneTwister());

	numAnnotations.train(data);
}
 
開發者ID:openimaj,項目名稱:openimaj,代碼行數:35,代碼來源:IndependentPriorRandomAnnotator.java

示例7: computePaths

import gnu.trove.map.hash.TIntIntHashMap; //導入方法依賴的package包/類
/**
 * Extract paths from a user tree and an item tree
 *
 * @return paths map (path index:freq)
 * @throws IOException
 * @throws ClassNotFoundException
 * @throws NumberFormatException
 */
public TIntIntHashMap computePaths(int item_id) {

    TIntIntHashMap res = new TIntIntHashMap();

    String item_pair_paths;
    boolean reverse;

    TIntIterator it = user_items.iterator();
    while (it.hasNext()) {

        reverse = false;
        int user_item_id = it.next();

        if (items_link.get(user_item_id).contains(item_id)) {

            if (user_item_id != item_id) {

                String user_item_rate = StringUtils.extractRate(
                        trainRatings.get(user_item_id), ratesThreshold);

                String key = user_item_id + "-" + item_id;

                if (!pathReader.containsKey(key)) {
                    reverse = true;
                    key = item_id + "-" + user_item_id;
                }

                item_pair_paths = loadPathsFromMap(key);

                String[] pair_vals = item_pair_paths.split(",");

                if (pair_vals.length > 0) {

                    for (String s : pair_vals) {

                        String[] path_freq = s.split("=");
                        int key1 = 0;

                        if (reverse)
                            key1 = extractKey(user_item_rate + "-inv_"
                                    + path_freq[0]);
                        else
                            key1 = extractKey(user_item_rate + "-"
                                    + path_freq[0]);

                        res.adjustOrPutValue(key1,
                                Integer.parseInt(path_freq[1]),
                                Integer.parseInt(path_freq[1]));

                    }
                }
            }
        }
    }

    return res;

}
 
開發者ID:sisinflab,項目名稱:lodreclib,代碼行數:67,代碼來源:UserPathExtractorWorker.java

示例8: sampleTopicsForOneTestDocAll

import gnu.trove.map.hash.TIntIntHashMap; //導入方法依賴的package包/類
private void sampleTopicsForOneTestDocAll(FeatureSequence tokenSequence,
		LabelSequence topicSequence) {
	// TODO Auto-generated method stub
	int[] oneDocTopics = topicSequence.getFeatures();

	TIntIntHashMap currentTypeTopicCounts;
	int type, oldTopic, newTopic;
	double tw;
	double[] topicWeights = new double[numTopics];
	double topicWeightsSum;
	int docLength = tokenSequence.getLength();

	//		populate topic counts
	int[] localTopicCounts = new int[numTopics];
	for (int ti = 0; ti < numTopics; ti++){
		localTopicCounts[ti] = 0;
	}
	for (int position = 0; position < docLength; position++) {
		localTopicCounts[oneDocTopics[position]] ++;
	}

	// Iterate over the positions (words) in the document
	for (int si = 0; si < docLength; si++) {
		type = tokenSequence.getIndexAtPosition(si);
		oldTopic = oneDocTopics[si];

		// Remove this token from all counts
		localTopicCounts[oldTopic] --;

		currentTypeTopicCounts = typeTopicCounts[type];
		assert(currentTypeTopicCounts.get(oldTopic) >= 0);

		if (currentTypeTopicCounts.get(oldTopic) == 1) {
			currentTypeTopicCounts.remove(oldTopic);
		}
		else {
			currentTypeTopicCounts.adjustValue(oldTopic, -1);
		}
		tokensPerTopic[oldTopic]--;

		// Build a distribution over topics for this token
		Arrays.fill (topicWeights, 0.0);
		topicWeightsSum = 0;

		for (int ti = 0; ti < numTopics; ti++) {
			tw = ((currentTypeTopicCounts.get(ti) + beta) / (tokensPerTopic[ti] + betaSum))
			      * ((localTopicCounts[ti] + alpha[ti])); // (/docLen-1+tAlpha); is constant across all topics
			topicWeightsSum += tw;
			topicWeights[ti] = tw;
		}
		// Sample a topic assignment from this distribution
		newTopic = random.nextDiscrete (topicWeights, topicWeightsSum);

		// Put that new topic into the counts
		oneDocTopics[si] = newTopic;
		currentTypeTopicCounts.adjustOrPutValue(newTopic, 1, 1);
		localTopicCounts[newTopic] ++;
		tokensPerTopic[newTopic]++;
	}
}
 
開發者ID:iamxiatian,項目名稱:wikit,代碼行數:61,代碼來源:LDAStream.java

示例9: sampleTopicsForOneTestDoc

import gnu.trove.map.hash.TIntIntHashMap; //導入方法依賴的package包/類
private void sampleTopicsForOneTestDoc(FeatureSequence tokenSequence,
		LabelSequence topicSequence) {
	// TODO Auto-generated method stub
	int[] oneDocTopics = topicSequence.getFeatures();

	TIntIntHashMap currentTypeTopicCounts;
	int type, oldTopic, newTopic;
	double tw;
	double[] topicWeights = new double[numTopics];
	double topicWeightsSum;
	int docLength = tokenSequence.getLength();

	//		populate topic counts
	int[] localTopicCounts = new int[numTopics];
	for (int ti = 0; ti < numTopics; ti++){
		localTopicCounts[ti] = 0;
	}
	for (int position = 0; position < docLength; position++) {
		if(oneDocTopics[position] != -1) {
			localTopicCounts[oneDocTopics[position]] ++;
		}
	}

	// Iterate over the positions (words) in the document
	for (int si = 0; si < docLength; si++) {
		type = tokenSequence.getIndexAtPosition(si);
		oldTopic = oneDocTopics[si];
		if(oldTopic == -1) {
			continue;
		}

		// Remove this token from all counts
    		localTopicCounts[oldTopic] --;
    		currentTypeTopicCounts = typeTopicCounts[type];
		assert(currentTypeTopicCounts.get(oldTopic) >= 0);

		if (currentTypeTopicCounts.get(oldTopic) == 1) {
			currentTypeTopicCounts.remove(oldTopic);
		}
		else {
			currentTypeTopicCounts.adjustValue(oldTopic, -1);
		}
		tokensPerTopic[oldTopic]--;

		// Build a distribution over topics for this token
		Arrays.fill (topicWeights, 0.0);
		topicWeightsSum = 0;

		for (int ti = 0; ti < numTopics; ti++) {
			tw = ((currentTypeTopicCounts.get(ti) + beta) / (tokensPerTopic[ti] + betaSum))
			      * ((localTopicCounts[ti] + alpha[ti])); // (/docLen-1+tAlpha); is constant across all topics
			topicWeightsSum += tw;
			topicWeights[ti] = tw;
		}
		// Sample a topic assignment from this distribution
		newTopic = random.nextDiscrete (topicWeights, topicWeightsSum);

		// Put that new topic into the counts
		oneDocTopics[si] = newTopic;
		currentTypeTopicCounts.adjustOrPutValue(newTopic, 1, 1);
		localTopicCounts[newTopic] ++;
		tokensPerTopic[newTopic]++;
	}
}
 
開發者ID:iamxiatian,項目名稱:wikit,代碼行數:65,代碼來源:LDAStream.java

示例10: sampleTopicsForOneDocWithTheta

import gnu.trove.map.hash.TIntIntHashMap; //導入方法依賴的package包/類
private void sampleTopicsForOneDocWithTheta(FeatureSequence tokenSequence,
		LabelSequence topicSequence, double[] topicDistribution) {
	// TODO Auto-generated method stub
	int[] oneDocTopics = topicSequence.getFeatures();

	TIntIntHashMap currentTypeTopicCounts;
	int type, oldTopic, newTopic;
	double tw;
	double[] topicWeights = new double[numTopics];
	double topicWeightsSum;
	int docLength = tokenSequence.getLength();
	
	// Iterate over the positions (words) in the document
	for (int si = 0; si < docLength; si++) {
		type = tokenSequence.getIndexAtPosition(si);
		oldTopic = oneDocTopics[si];
		if(oldTopic == -1) {
			continue;
		}

 		currentTypeTopicCounts = typeTopicCounts[type];
		assert(currentTypeTopicCounts.get(oldTopic) >= 0);

		if (currentTypeTopicCounts.get(oldTopic) == 1) {
			currentTypeTopicCounts.remove(oldTopic);
		}
		else {
			currentTypeTopicCounts.adjustValue(oldTopic, -1);
		}
		tokensPerTopic[oldTopic]--;

		// Build a distribution over topics for this token
		Arrays.fill (topicWeights, 0.0);
		topicWeightsSum = 0;

		for (int ti = 0; ti < numTopics; ti++) {
			tw = ((currentTypeTopicCounts.get(ti) + beta) / (tokensPerTopic[ti] + betaSum))
			      * topicDistribution[ti]; // (/docLen-1+tAlpha); is constant across all topics
			topicWeightsSum += tw;
			topicWeights[ti] = tw;
		}
		// Sample a topic assignment from this distribution
		newTopic = random.nextDiscrete (topicWeights, topicWeightsSum);

		// Put that new topic into the counts
		oneDocTopics[si] = newTopic;
		currentTypeTopicCounts.adjustOrPutValue(newTopic, 1, 1);
		tokensPerTopic[newTopic]++;
	}
}
 
開發者ID:iamxiatian,項目名稱:wikit,代碼行數:51,代碼來源:LDAStream.java

示例11: estimateModel

import gnu.trove.map.hash.TIntIntHashMap; //導入方法依賴的package包/類
@Override
public void estimateModel(MBFImage... images) {	
	for (int i=0; i<ndims; i++) {
		mean[i] = 0;
		TFloatArrayList values = new TFloatArrayList();
		TIntIntHashMap freqs = new TIntIntHashMap();
		
		int count = 0;
		for (MBFImage im : images) {
			FImage band = im.getBand(i);
			
			for (int r=0; r<band.height; r++) {
				for (int c=0; c<band.width; c++) {
					float val = band.pixels[r][c];
					mean[i] += val;
					values.add(val);
					freqs.adjustOrPutValue(Math.round(val*255F), 1, 1);
					count++;
				}
			}
		}
		
		//mean
		mean[i] /= count;
		
		//median
		values.sort();
		int idx = values.size() / 2;
		if (values.size() % 2 == 0) {
			median[i] = (values.get(idx) + values.get(idx - 1)) / 2.0;
		} else {
			median[i] = values.get(idx);
		}

		//mode
		HashMax hm = new HashMax();
		freqs.forEachEntry(hm);
		mode[i] = hm.idx / 255.0;
		
		//range
		range[i] = values.get(values.size() - 1) - values.get(0);
		
		//variance
		variance[i] = 0;
		for (int j=0; j<values.size(); j++) {
			variance[i] += (values.get(j) - mean[i]) * (values.get(j) - mean[i]);
		}
		variance[i] = sqrt(variance[i] / values.size());
	}
}
 
開發者ID:openimaj,項目名稱:openimaj,代碼行數:51,代碼來源:BasicDescriptiveStatisticsModel.java


注:本文中的gnu.trove.map.hash.TIntIntHashMap.adjustOrPutValue方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。