本文整理匯總了Java中dr.inference.distribution.DistributionLikelihood.getDistribution方法的典型用法代碼示例。如果您正苦於以下問題:Java DistributionLikelihood.getDistribution方法的具體用法?Java DistributionLikelihood.getDistribution怎麽用?Java DistributionLikelihood.getDistribution使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類dr.inference.distribution.DistributionLikelihood
的用法示例。
在下文中一共展示了DistributionLikelihood.getDistribution方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: parseXMLObject
import dr.inference.distribution.DistributionLikelihood; //導入方法依賴的package包/類
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
double weight = xo.getDoubleAttribute(WEIGHT);
DistributionLikelihood likelihood = (DistributionLikelihood) ((XMLObject) xo.getChild(LIKELIHOOD)).getChild(DistributionLikelihood.class);
DistributionLikelihood prior = (DistributionLikelihood) ((XMLObject) xo.getChild(PRIOR)).getChild(DistributionLikelihood.class);
// System.err.println("class: " + prior.getDistribution().getClass());
if (!((prior.getDistribution() instanceof GammaDistribution) ||
(prior.getDistribution() instanceof GammaDistributionModel)
) ||
!((likelihood.getDistribution() instanceof NormalDistributionModel) ||
(likelihood.getDistribution() instanceof LogNormalDistributionModel)
))
throw new XMLParseException("Gibbs operator assumes normal-gamma model");
return new NormalGammaPrecisionGibbsOperator(likelihood, prior.getDistribution(), weight);
}
示例2: NormalNormalMeanGibbsOperator
import dr.inference.distribution.DistributionLikelihood; //導入方法依賴的package包/類
public NormalNormalMeanGibbsOperator(DistributionLikelihood inLikelihood, Distribution prior,
double weight) {
if (!(prior instanceof NormalDistribution || prior instanceof NormalDistributionModel))
throw new RuntimeException("Mean prior must be Normal");
this.likelihood = inLikelihood.getDistribution();
this.dataList = inLikelihood.getDataList();
if (likelihood instanceof NormalDistributionModel)
this.meanParameter = (Parameter) ((NormalDistributionModel) likelihood).getMean();
else if (likelihood instanceof LogNormalDistributionModel) {
if (((LogNormalDistributionModel) likelihood).getParameterization() == LogNormalDistributionModel.Parameterization.MEAN_STDEV) {
this.meanParameter = ((LogNormalDistributionModel) likelihood).getMeanParameter();
} else {
this.meanParameter = ((LogNormalDistributionModel) likelihood).getMuParameter();
}
isLog = true;
} else
throw new RuntimeException("Likelihood must be Normal or log Normal");
this.prior = prior;
setWeight(weight);
}
示例3: parseXMLObject
import dr.inference.distribution.DistributionLikelihood; //導入方法依賴的package包/類
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
double weight = xo.getDoubleAttribute(WEIGHT);
DistributionLikelihood likelihood = (DistributionLikelihood) ((XMLObject) xo.getChild(LIKELIHOOD)).getChild(DistributionLikelihood.class);
DistributionLikelihood prior = (DistributionLikelihood) ((XMLObject) xo.getChild(PRIOR)).getChild(DistributionLikelihood.class);
// System.err.println("class: " + prior.getDistribution().getClass());
if (!((prior.getDistribution() instanceof NormalDistribution) ||
(prior.getDistribution() instanceof NormalDistributionModel)
) ||
!((likelihood.getDistribution() instanceof NormalDistributionModel) ||
(likelihood.getDistribution() instanceof LogNormalDistributionModel)
))
throw new XMLParseException("Gibbs operator assumes normal-normal model");
return new NormalNormalMeanGibbsOperator(likelihood, prior.getDistribution(), weight);
}
示例4: parseXMLObject
import dr.inference.distribution.DistributionLikelihood; //導入方法依賴的package包/類
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
DistributionLikelihood priorLikelihood = (DistributionLikelihood)xo.getElementFirstChild(PRIOR);
DistributionLikelihood pseudoPriorLikelihood = (DistributionLikelihood)xo.getElementFirstChild(PSEUDO_PRIOR);
Distribution prior = priorLikelihood.getDistribution();
Distribution pseudoPrior = pseudoPriorLikelihood.getDistribution();
Parameter modelIndicator = (Parameter)xo.getElementFirstChild(MODEL_INDICATOR);
int[] models = xo.getIntegerArrayAttribute(MODELS);
Parameter selectedVariable = (Parameter)xo.getElementFirstChild(SELECTED_VARIABLE);
ModelSpecificPseudoPriorLikelihood likelihood =
new ModelSpecificPseudoPriorLikelihood(
prior,
pseudoPrior,
modelIndicator,
models
);
likelihood.addData(selectedVariable);
return likelihood;
}
示例5: parseXMLObject
import dr.inference.distribution.DistributionLikelihood; //導入方法依賴的package包/類
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
DistributionLikelihood priorLikelihood = (DistributionLikelihood)xo.getElementFirstChild(PRIOR);
DistributionLikelihood pseudoPriorLikelihood = (DistributionLikelihood)xo.getElementFirstChild(PSEUDO_PRIOR);
Distribution prior = priorLikelihood.getDistribution();
Distribution pseudoPrior = pseudoPriorLikelihood.getDistribution();
Parameter bitVector = (Parameter)xo.getElementFirstChild(PARAMETER_VECTOR);
int paramIndex = xo.getIntegerAttribute(PARAMETER_INDEX);
Parameter selectedVariable = (Parameter)xo.getElementFirstChild(SELECTED_VARIABLE);
TwoPartsDistributionLikelihood likelihood =
new TwoPartsDistributionLikelihood(
prior,
pseudoPrior,
bitVector,
paramIndex
);
likelihood.addData(selectedVariable);
return likelihood;
}
示例6: parseXMLObject
import dr.inference.distribution.DistributionLikelihood; //導入方法依賴的package包/類
@Override
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
Object obj = xo.getChild(0);
if (obj instanceof MultivariateDistributionLikelihood) {
final MultivariateDistributionLikelihood mdl = (MultivariateDistributionLikelihood)
xo.getChild(MultivariateDistributionLikelihood.class);
if (!(mdl.getDistribution() instanceof GradientProvider)) {
throw new XMLParseException("Not a gradient provider");
}
final GradientProvider provider = (GradientProvider) mdl.getDistribution();
final Parameter parameter = mdl.getDataParameter();
return new GradientWrtParameterProvider.ParameterWrapper(provider, parameter, mdl);
} else {
DistributionLikelihood dl = (DistributionLikelihood) obj;
if (!(dl.getDistribution() instanceof GradientProvider)) {
throw new XMLParseException("Not a gradient provider");
}
throw new RuntimeException("Not yet implemented");
}
}
示例7: NormalGammaPrecisionGibbsOperator
import dr.inference.distribution.DistributionLikelihood; //導入方法依賴的package包/類
public NormalGammaPrecisionGibbsOperator(DistributionLikelihood inLikelihood, Distribution prior,
double weight) {
if (!(prior instanceof GammaDistribution || prior instanceof GammaDistributionModel))
throw new RuntimeException("Precision prior must be Gamma");
Distribution likelihood = inLikelihood.getDistribution();
this.dataList = inLikelihood.getDataList();
if (likelihood instanceof NormalDistributionModel) {
this.precisionParameter = (Parameter) ((NormalDistributionModel) likelihood).getPrecision();
this.meanParameter = (Parameter) ((NormalDistributionModel) likelihood).getMean();
} else if (likelihood instanceof LogNormalDistributionModel) {
this.precisionParameter = ((LogNormalDistributionModel) likelihood).getPrecisionParameter();
this.meanParameter = ((LogNormalDistributionModel) likelihood).getMeanParameter();
isLog = true;
} else
throw new RuntimeException("Likelihood must be Normal or log Normal");
if (precisionParameter == null)
throw new RuntimeException("Must characterize likelihood in terms of a precision parameter");
this.prior = prior;
setWeight(weight);
}
示例8: NormalNormalMeanGibbsOperator
import dr.inference.distribution.DistributionLikelihood; //導入方法依賴的package包/類
public NormalNormalMeanGibbsOperator(DistributionLikelihood inLikelihood, Distribution prior,
double weight) {
if (!(prior instanceof NormalDistribution || prior instanceof NormalDistributionModel))
throw new RuntimeException("Mean prior must be Normal");
this.likelihood = inLikelihood.getDistribution();
this.dataList = inLikelihood.getDataList();
if (likelihood instanceof NormalDistributionModel)
this.meanParameter = (Parameter) ((NormalDistributionModel) likelihood).getMean();
else if (likelihood instanceof LogNormalDistributionModel) {
this.meanParameter = ((LogNormalDistributionModel) likelihood).getMeanParameter();
isLog = true;
} else
throw new RuntimeException("Likelihood must be Normal or log Normal");
this.prior = prior;
setWeight(weight);
}
示例9: TruncatedDistributionLikelihood
import dr.inference.distribution.DistributionLikelihood; //導入方法依賴的package包/類
public TruncatedDistributionLikelihood(DistributionLikelihood distribution, Parameter low, Parameter high){
super(distribution.getDistribution());
this.dataList = (ArrayList<Attribute<double[]>>) distribution.getDataList();
// for(Attribute<double[]> data : list){
// System.out.println("here");
// this.addData(data);
// }
this.low = low;
this.high = high;
}
示例10: NormalGammaPrecisionGibbsOperator
import dr.inference.distribution.DistributionLikelihood; //導入方法依賴的package包/類
public NormalGammaPrecisionGibbsOperator(DistributionLikelihood inLikelihood, Distribution prior,
double weight) {
if (!(prior instanceof GammaDistribution || prior instanceof GammaDistributionModel))
throw new RuntimeException("Precision prior must be Gamma");
Distribution likelihood = inLikelihood.getDistribution();
this.dataList = inLikelihood.getDataList();
if (likelihood instanceof NormalDistributionModel) {
this.precisionParameter = (Parameter) ((NormalDistributionModel) likelihood).getPrecision();
this.meanParameter = (Parameter) ((NormalDistributionModel) likelihood).getMean();
} else if (likelihood instanceof LogNormalDistributionModel) {
if (((LogNormalDistributionModel) likelihood).getParameterization() == LogNormalDistributionModel.Parameterization.MU_PRECISION) {
this.meanParameter = ((LogNormalDistributionModel) likelihood).getMuParameter();
} else {
throw new RuntimeException("Must characterize likelihood in terms of mu and precision parameters");
}
this.precisionParameter = ((LogNormalDistributionModel) likelihood).getPrecisionParameter();
isLog = true;
} else
throw new RuntimeException("Likelihood must be Normal or log Normal");
if (precisionParameter == null)
throw new RuntimeException("Must characterize likelihood in terms of a precision parameter");
this.prior = prior;
setWeight(weight);
}
示例11: LatentFactorModelPrecisionGibbsOperator
import dr.inference.distribution.DistributionLikelihood; //導入方法依賴的package包/類
public LatentFactorModelPrecisionGibbsOperator(LatentFactorModel LFM, DistributionLikelihood prior, double weight, boolean randomScan) {
setWeight(weight);
this.LFM = LFM;
this.prior = (GammaDistribution) prior.getDistribution();
this.randomScan = randomScan;
this.missingIndicator = LFM.getMissingIndicator();
// FacXLoad=new double[LFM.getFactors().getColumnDimension()];
// residual=new double[LFM.getFactors().getColumnDimension()];
// setShape();
}
示例12: parseXMLObject
import dr.inference.distribution.DistributionLikelihood; //導入方法依賴的package包/類
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
double weight = xo.getDoubleAttribute(WEIGHT);
AbstractMultivariateTraitLikelihood traitLikelihood =
(AbstractMultivariateTraitLikelihood) xo.getChild(AbstractMultivariateTraitLikelihood.class);
ArbitraryBranchRates branchRates = (ArbitraryBranchRates) xo.getChild(ArbitraryBranchRates.class);
DistributionLikelihood priorLikelihood = (DistributionLikelihood) xo.getChild(DistributionLikelihood.class);
GammaDistributionModel gammaPriorModel = null;
GammaDistribution gammaPrior = null;
if (priorLikelihood.getDistribution() instanceof GammaDistributionModel) {
gammaPriorModel = (GammaDistributionModel) priorLikelihood.getDistribution();
} else if (priorLikelihood.getDistribution() instanceof GammaDistribution) {
gammaPrior = (GammaDistribution) priorLikelihood.getDistribution();
} else {
throw new XMLParseException("Currently only works with a GammaDistributionModel or GammaDistribution");
}
if (!branchRates.usingReciprocal()) {
throw new XMLParseException(
"Gibbs sampling of rates only works with reciprocal rates under an ArbitraryBranchRates model");
}
TraitRateGibbsOperator operator = new TraitRateGibbsOperator(traitLikelihood, branchRates, gammaPriorModel, gammaPrior);
operator.setWeight(weight);
return operator;
}
示例13: LoadingsIndependenceOperator
import dr.inference.distribution.DistributionLikelihood; //導入方法依賴的package包/類
public LoadingsIndependenceOperator(LatentFactorModel LFM, DistributionLikelihood prior, double weight, boolean randomScan, double scaleFactor, CoercionMode mode) {
super(mode);
setWeight(weight);
this.scaleFactor = scaleFactor;
this.prior = (NormalDistribution) prior.getDistribution();
this.LFM = LFM;
precisionArray = new ArrayList<double[][]>();
double[][] temp;
this.randomScan = randomScan;
meanArray = new ArrayList<double[]>();
meanMidArray = new ArrayList<double[]>();
double[] tempMean;
if (!randomScan) {
for (int i = 0; i < LFM.getFactorDimension(); i++) {
temp = new double[i + 1][i + 1];
precisionArray.add(temp);
}
for (int i = 0; i < LFM.getFactorDimension(); i++) {
tempMean = new double[i + 1];
meanArray.add(tempMean);
}
for (int i = 0; i < LFM.getFactorDimension(); i++) {
tempMean = new double[i + 1];
meanMidArray.add(tempMean);
}
} else {
for (int i = 0; i < LFM.getFactorDimension(); i++) {
temp = new double[LFM.getFactorDimension() - i][LFM.getFactorDimension() - i];
precisionArray.add(temp);
}
for (int i = 0; i < LFM.getFactorDimension(); i++) {
tempMean = new double[LFM.getFactorDimension() - i];
meanArray.add(tempMean);
}
for (int i = 0; i < LFM.getFactorDimension(); i++) {
tempMean = new double[LFM.getFactorDimension() - i];
meanMidArray.add(tempMean);
}
}
// vectorProductAnswer=new MatrixParameter[LFM.getLoadings().getRowDimension()];
// for (int i = 0; i <vectorProductAnswer.length ; i++) {
// vectorProductAnswer[i]=new MatrixParameter(null);
// vectorProductAnswer[i].setDimensions(i+1, 1);
// }
// priorMeanVector=new MatrixParameter[LFM.getLoadings().getRowDimension()];
// for (int i = 0; i <priorMeanVector.length ; i++) {
// priorMeanVector[i]=new MatrixParameter(null, i+1, 1, this.prior.getMean()/(this.prior.getSD()*this.prior.getSD()));
//
//
// }
priorPrecision = 1 / (this.prior.getSD() * this.prior.getSD());
priorMeanPrecision = this.prior.getMean() * priorPrecision;
}
示例14: parseXMLObject
import dr.inference.distribution.DistributionLikelihood; //導入方法依賴的package包/類
@Override
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
List<GradientWrtParameterProvider> gradList = new ArrayList<GradientWrtParameterProvider>();
List<Likelihood> likelihoodList = new ArrayList<Likelihood>(); // TODO Remove?
for (int i = 0; i < xo.getChildCount(); ++i) {
Object obj = xo.getChild(i);
GradientWrtParameterProvider grad;
Likelihood likelihood;
if (obj instanceof DistributionLikelihood) {
DistributionLikelihood dl = (DistributionLikelihood) obj;
if (!(dl.getDistribution() instanceof GradientProvider)) {
throw new XMLParseException("Not a gradient provider");
}
throw new RuntimeException("Not yet implemented");
} else if (obj instanceof MultivariateDistributionLikelihood) {
final MultivariateDistributionLikelihood mdl = (MultivariateDistributionLikelihood) obj;
if (!(mdl.getDistribution() instanceof GradientProvider)) {
throw new XMLParseException("Not a gradient provider");
}
final GradientProvider provider = (GradientProvider) mdl.getDistribution();
final Parameter parameter = mdl.getDataParameter();
likelihood = mdl;
grad = new GradientWrtParameterProvider.ParameterWrapper(provider, parameter, mdl);
} else if (obj instanceof GradientWrtParameterProvider) {
grad = (GradientWrtParameterProvider) obj;
likelihood = grad.getLikelihood();
} else {
throw new XMLParseException("Not a Gaussian process");
}
gradList.add(grad);
likelihoodList.add(likelihood);
}
return new CompoundGradient(gradList);
}