本文整理匯總了Java中dr.inference.distribution.DistributionLikelihood類的典型用法代碼示例。如果您正苦於以下問題:Java DistributionLikelihood類的具體用法?Java DistributionLikelihood怎麽用?Java DistributionLikelihood使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
DistributionLikelihood類屬於dr.inference.distribution包,在下文中一共展示了DistributionLikelihood類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: main
import dr.inference.distribution.DistributionLikelihood; //導入依賴的package包/類
public static void main(String[] arg) throws IOException, TraceException {
// constructing random variable representing mean of normal distribution
Variable.D mean = new Variable.D("mean", 1.0);
// give mean a uniform prior [-1000, 1000]
mean.addBounds(new Parameter.DefaultBounds(1000, -1000, 1));
// constructing random variable representing stdev of normal distribution
Variable.D stdev = new Variable.D("stdev", 1.0);
// give stdev a uniform prior [0, 1000]
stdev.addBounds(new Parameter.DefaultBounds(1000, 0, 1));
// construct normal distribution model
NormalDistributionModel normal = new NormalDistributionModel(mean, stdev);
// construct a likelihood for normal distribution
DistributionLikelihood likelihood = new DistributionLikelihood(normal);
// construct data
Attribute.Default<double[]> d = new Attribute.Default<double[]>(
"x", new double[]{1, 2, 3, 4, 5, 6, 7, 8, 9});
// add data (representing 9 independent observations) to likelihood
likelihood.addData(d);
// construct two "operators" to be used as the proposal distribution
MCMCOperator meanMove = new ScaleOperator(mean, 0.75);
MCMCOperator stdevMove = new ScaleOperator(stdev, 0.75);
// construct a logger to log progress of MCMC run to stdout (screen)
MCLogger logger1 = new MCLogger(100);
logger1.add(mean);
logger1.add(stdev);
// construct a logger to log to a log file for later analysis
MCLogger logger2 = new MCLogger("tutorial1.log", 100, false, 0);
logger2.add(mean);
logger2.add(stdev);
// construct MCMC object
MCMC mcmc = new MCMC("tutorial1:normal");
// initialize MCMC with chain length, likelihood, operators and loggers
mcmc.init(100000, likelihood, new MCMCOperator[]{meanMove, stdevMove}, new Logger[]{logger1, logger2});
// run the mcmc
mcmc.chain();
// perform post-analysis
TraceAnalysis.report("tutorial1.log");
}
示例2: main
import dr.inference.distribution.DistributionLikelihood; //導入依賴的package包/類
public static void main(String[] arg) {
// Define normal model
Parameter meanParameter = new Parameter.Default(1.0); // Starting value
Variable<Double> stdev = new Variable.D(1.0, 1); // Fixed value
ParametricDistributionModel densityModel = new NormalDistributionModel(meanParameter, stdev);
DistributionLikelihood likelihood = new DistributionLikelihood(densityModel);
// Define prior
DistributionLikelihood prior = new DistributionLikelihood(new NormalDistribution(0.0, 1.0)); // Hyper-priors
prior.addData(meanParameter);
// Define data
likelihood.addData(new Attribute.Default<double[]>("Data", new double[] {0.0, 1.0, 2.0}));
List<Likelihood> list = new ArrayList<Likelihood>();
list.add(likelihood);
list.add(prior);
CompoundLikelihood posterior = new CompoundLikelihood(0, list);
SliceOperator sliceSampler = new SliceOperator(meanParameter);
final int length = 10000;
double mean = 0;
double variance = 0;
for(int i = 0; i < length; i++) {
sliceSampler.doOperation(posterior);
double x = meanParameter.getValue(0);
mean += x;
variance += x*x;
}
mean /= length;
variance /= length;
variance -= mean*mean;
System.out.println("E(x) = "+mean);
System.out.println("V(x) = "+variance);
}
示例3: parseXMLObject
import dr.inference.distribution.DistributionLikelihood; //導入依賴的package包/類
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
double mean = xo.getDoubleAttribute(MEAN);
double offset = xo.getDoubleAttribute(OFFSET);
DistributionLikelihood likelihood = new DistributionLikelihood(new PoissonDistribution(mean), offset);
for (int j = 0; j < xo.getChildCount(); j++) {
if (xo.getChild(j) instanceof Statistic) {
likelihood.addData((Statistic) xo.getChild(j));
} else {
throw new XMLParseException("illegal element in " + xo.getName() + " element");
}
}
return likelihood;
}
示例4: createTasks
import dr.inference.distribution.DistributionLikelihood; //導入依賴的package包/類
private List<Callable<DrawResult>> createTasks() {
List<Callable<DrawResult>> callers = new ArrayList<Callable<DrawResult>>();
int offset = 0;
int index = 0;
for (GaussianProcessRandomGenerator gp : gpList) {
final int copies = copyList.get(index);
if (likelihoodList.get(index) instanceof DistributionLikelihood) { // Univariate
callers.add(new DrawCaller(gp, copies, offset, true));
offset += copies;
} else {
for (int i = 0; i < copies; ++i) {
callers.add(new DrawCaller(gp, 1, offset, false));
offset += gp.getDimension();
}
}
}
return callers;
}
示例5: LoadingsGibbsTruncatedOperator
import dr.inference.distribution.DistributionLikelihood; //導入依賴的package包/類
public LoadingsGibbsTruncatedOperator(LatentFactorModel LFM, Likelihood prior, double weight, boolean randomScan, MatrixParameterInterface loadings, DistributionLikelihood cutoffPrior) {
setWeight(weight);
this.loadings=loadings;
this.prior = prior;
this.LFM = LFM;
if(prior instanceof MomentDistributionModel){
priorPrecision = (((MomentDistributionModel) this.prior).getScaleMatrix()[0][0]);
priorMeanPrecision = ((MomentDistributionModel) this.prior).getMean()[0] * priorPrecision;}
else if (prior instanceof DistributionLikelihood){
priorPrecision = 1 / ((DistributionLikelihood) this.prior).getDistribution().variance();
priorMeanPrecision = ((DistributionLikelihood) this.prior).getDistribution().mean() * priorPrecision;
}
this.cutoffPrior = cutoffPrior;
missingIndicator = LFM.getMissingIndicator();
}
示例6: parseXMLObject
import dr.inference.distribution.DistributionLikelihood; //導入依賴的package包/類
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
double weight = xo.getDoubleAttribute(WEIGHT);
DistributionLikelihood likelihood = (DistributionLikelihood) ((XMLObject) xo.getChild(LIKELIHOOD)).getChild(DistributionLikelihood.class);
DistributionLikelihood prior = (DistributionLikelihood) ((XMLObject) xo.getChild(PRIOR)).getChild(DistributionLikelihood.class);
// System.err.println("class: " + prior.getDistribution().getClass());
if (!((prior.getDistribution() instanceof GammaDistribution) ||
(prior.getDistribution() instanceof GammaDistributionModel)
) ||
!((likelihood.getDistribution() instanceof NormalDistributionModel) ||
(likelihood.getDistribution() instanceof LogNormalDistributionModel)
))
throw new XMLParseException("Gibbs operator assumes normal-gamma model");
return new NormalGammaPrecisionGibbsOperator(likelihood, prior.getDistribution(), weight);
}
示例7: NormalNormalMeanGibbsOperator
import dr.inference.distribution.DistributionLikelihood; //導入依賴的package包/類
public NormalNormalMeanGibbsOperator(DistributionLikelihood inLikelihood, Distribution prior,
double weight) {
if (!(prior instanceof NormalDistribution || prior instanceof NormalDistributionModel))
throw new RuntimeException("Mean prior must be Normal");
this.likelihood = inLikelihood.getDistribution();
this.dataList = inLikelihood.getDataList();
if (likelihood instanceof NormalDistributionModel)
this.meanParameter = (Parameter) ((NormalDistributionModel) likelihood).getMean();
else if (likelihood instanceof LogNormalDistributionModel) {
if (((LogNormalDistributionModel) likelihood).getParameterization() == LogNormalDistributionModel.Parameterization.MEAN_STDEV) {
this.meanParameter = ((LogNormalDistributionModel) likelihood).getMeanParameter();
} else {
this.meanParameter = ((LogNormalDistributionModel) likelihood).getMuParameter();
}
isLog = true;
} else
throw new RuntimeException("Likelihood must be Normal or log Normal");
this.prior = prior;
setWeight(weight);
}
示例8: parseXMLObject
import dr.inference.distribution.DistributionLikelihood; //導入依賴的package包/類
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
double weight = xo.getDoubleAttribute(WEIGHT);
DistributionLikelihood likelihood = (DistributionLikelihood) ((XMLObject) xo.getChild(LIKELIHOOD)).getChild(DistributionLikelihood.class);
DistributionLikelihood prior = (DistributionLikelihood) ((XMLObject) xo.getChild(PRIOR)).getChild(DistributionLikelihood.class);
// System.err.println("class: " + prior.getDistribution().getClass());
if (!((prior.getDistribution() instanceof NormalDistribution) ||
(prior.getDistribution() instanceof NormalDistributionModel)
) ||
!((likelihood.getDistribution() instanceof NormalDistributionModel) ||
(likelihood.getDistribution() instanceof LogNormalDistributionModel)
))
throw new XMLParseException("Gibbs operator assumes normal-normal model");
return new NormalNormalMeanGibbsOperator(likelihood, prior.getDistribution(), weight);
}
示例9: parseXMLObject
import dr.inference.distribution.DistributionLikelihood; //導入依賴的package包/類
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
DistributionLikelihood priorLikelihood = (DistributionLikelihood)xo.getElementFirstChild(PRIOR);
DistributionLikelihood pseudoPriorLikelihood = (DistributionLikelihood)xo.getElementFirstChild(PSEUDO_PRIOR);
Distribution prior = priorLikelihood.getDistribution();
Distribution pseudoPrior = pseudoPriorLikelihood.getDistribution();
Parameter modelIndicator = (Parameter)xo.getElementFirstChild(MODEL_INDICATOR);
int[] models = xo.getIntegerArrayAttribute(MODELS);
Parameter selectedVariable = (Parameter)xo.getElementFirstChild(SELECTED_VARIABLE);
ModelSpecificPseudoPriorLikelihood likelihood =
new ModelSpecificPseudoPriorLikelihood(
prior,
pseudoPrior,
modelIndicator,
models
);
likelihood.addData(selectedVariable);
return likelihood;
}
示例10: parseXMLObject
import dr.inference.distribution.DistributionLikelihood; //導入依賴的package包/類
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
DistributionLikelihood priorLikelihood = (DistributionLikelihood)xo.getElementFirstChild(PRIOR);
DistributionLikelihood pseudoPriorLikelihood = (DistributionLikelihood)xo.getElementFirstChild(PSEUDO_PRIOR);
Distribution prior = priorLikelihood.getDistribution();
Distribution pseudoPrior = pseudoPriorLikelihood.getDistribution();
Parameter bitVector = (Parameter)xo.getElementFirstChild(PARAMETER_VECTOR);
int paramIndex = xo.getIntegerAttribute(PARAMETER_INDEX);
Parameter selectedVariable = (Parameter)xo.getElementFirstChild(SELECTED_VARIABLE);
TwoPartsDistributionLikelihood likelihood =
new TwoPartsDistributionLikelihood(
prior,
pseudoPrior,
bitVector,
paramIndex
);
likelihood.addData(selectedVariable);
return likelihood;
}
示例11: parseXMLObject
import dr.inference.distribution.DistributionLikelihood; //導入依賴的package包/類
@Override
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
Object obj = xo.getChild(0);
if (obj instanceof MultivariateDistributionLikelihood) {
final MultivariateDistributionLikelihood mdl = (MultivariateDistributionLikelihood)
xo.getChild(MultivariateDistributionLikelihood.class);
if (!(mdl.getDistribution() instanceof GradientProvider)) {
throw new XMLParseException("Not a gradient provider");
}
final GradientProvider provider = (GradientProvider) mdl.getDistribution();
final Parameter parameter = mdl.getDataParameter();
return new GradientWrtParameterProvider.ParameterWrapper(provider, parameter, mdl);
} else {
DistributionLikelihood dl = (DistributionLikelihood) obj;
if (!(dl.getDistribution() instanceof GradientProvider)) {
throw new XMLParseException("Not a gradient provider");
}
throw new RuntimeException("Not yet implemented");
}
}
示例12: parseXMLObject
import dr.inference.distribution.DistributionLikelihood; //導入依賴的package包/類
public Object parseXMLObject(XMLObject xo) throws XMLParseException {
double mean = xo.getDoubleAttribute(MEAN);
double stdev = xo.getDoubleAttribute(STDEV);
DistributionLikelihood likelihood = new DistributionLikelihood(new NormalDistribution(mean, stdev));
for (int j = 0; j < xo.getChildCount(); j++) {
if (xo.getChild(j) instanceof Statistic) {
likelihood.addData((Statistic) xo.getChild(j));
} else if (!(xo.getChild(j) instanceof LatentTruncation)) {
throw new XMLParseException("Illegal element in " + xo.getName() + " element");
}
}
LatentTruncation truncation = (LatentTruncation) xo.getChild(LatentTruncation.class);
return new TruncatedWorkingDistribution(likelihood, truncation);
}
示例13: NormalGammaPrecisionGibbsOperator
import dr.inference.distribution.DistributionLikelihood; //導入依賴的package包/類
public NormalGammaPrecisionGibbsOperator(DistributionLikelihood inLikelihood, Distribution prior,
double weight) {
if (!(prior instanceof GammaDistribution || prior instanceof GammaDistributionModel))
throw new RuntimeException("Precision prior must be Gamma");
Distribution likelihood = inLikelihood.getDistribution();
this.dataList = inLikelihood.getDataList();
if (likelihood instanceof NormalDistributionModel) {
this.precisionParameter = (Parameter) ((NormalDistributionModel) likelihood).getPrecision();
this.meanParameter = (Parameter) ((NormalDistributionModel) likelihood).getMean();
} else if (likelihood instanceof LogNormalDistributionModel) {
this.precisionParameter = ((LogNormalDistributionModel) likelihood).getPrecisionParameter();
this.meanParameter = ((LogNormalDistributionModel) likelihood).getMeanParameter();
isLog = true;
} else
throw new RuntimeException("Likelihood must be Normal or log Normal");
if (precisionParameter == null)
throw new RuntimeException("Must characterize likelihood in terms of a precision parameter");
this.prior = prior;
setWeight(weight);
}
示例14: NormalNormalMeanGibbsOperator
import dr.inference.distribution.DistributionLikelihood; //導入依賴的package包/類
public NormalNormalMeanGibbsOperator(DistributionLikelihood inLikelihood, Distribution prior,
double weight) {
if (!(prior instanceof NormalDistribution || prior instanceof NormalDistributionModel))
throw new RuntimeException("Mean prior must be Normal");
this.likelihood = inLikelihood.getDistribution();
this.dataList = inLikelihood.getDataList();
if (likelihood instanceof NormalDistributionModel)
this.meanParameter = (Parameter) ((NormalDistributionModel) likelihood).getMean();
else if (likelihood instanceof LogNormalDistributionModel) {
this.meanParameter = ((LogNormalDistributionModel) likelihood).getMeanParameter();
isLog = true;
} else
throw new RuntimeException("Likelihood must be Normal or log Normal");
this.prior = prior;
setWeight(weight);
}
示例15: testLognormalPrior
import dr.inference.distribution.DistributionLikelihood; //導入依賴的package包/類
public void testLognormalPrior() {
// ConstantPopulation constant = new ConstantPopulation(Units.Type.YEARS);
// constant.setN0(popSize); // popSize
Parameter popSize = new Parameter.Default(6.0);
popSize.setId(ConstantPopulationModelParser.POPULATION_SIZE);
ConstantPopulationModel demo = new ConstantPopulationModel(popSize, Units.Type.YEARS);
//Likelihood
Likelihood dummyLikelihood = new DummyLikelihood(demo);
// Operators
OperatorSchedule schedule = new SimpleOperatorSchedule();
MCMCOperator operator = new ScaleOperator(popSize, 0.75);
operator.setWeight(1.0);
schedule.addOperator(operator);
// Log
ArrayLogFormatter formatter = new ArrayLogFormatter(false);
MCLogger[] loggers = new MCLogger[2];
loggers[0] = new MCLogger(formatter, 1000, false);
// loggers[0].add(treeLikelihood);
loggers[0].add(popSize);
loggers[1] = new MCLogger(new TabDelimitedFormatter(System.out), 100000, false);
// loggers[1].add(treeLikelihood);
loggers[1].add(popSize);
// MCMC
MCMC mcmc = new MCMC("mcmc1");
MCMCOptions options = new MCMCOptions();
options.setChainLength(1000000);
options.setUseCoercion(true); // autoOptimize = true
options.setCoercionDelay(100);
options.setTemperature(1.0);
options.setFullEvaluationCount(2000);
DistributionLikelihood logNormalLikelihood = new DistributionLikelihood(new LogNormalDistribution(1.0, 1.0), 0); // meanInRealSpace="false"
logNormalLikelihood.addData(popSize);
List<Likelihood> likelihoods = new ArrayList<Likelihood>();
likelihoods.add(logNormalLikelihood);
Likelihood prior = new CompoundLikelihood(0, likelihoods);
likelihoods.clear();
likelihoods.add(dummyLikelihood);
Likelihood likelihood = new CompoundLikelihood(-1, likelihoods);
likelihoods.clear();
likelihoods.add(prior);
likelihoods.add(likelihood);
Likelihood posterior = new CompoundLikelihood(0, likelihoods);
mcmc.setShowOperatorAnalysis(true);
mcmc.init(options, posterior, schedule, loggers);
mcmc.run();
// time
System.out.println(mcmc.getTimer().toString());
// Tracer
List<Trace> traces = formatter.getTraces();
ArrayTraceList traceList = new ArrayTraceList("LognormalPriorTest", traces, 0);
for (int i = 1; i < traces.size(); i++) {
traceList.analyseTrace(i);
}
// <expectation name="param" value="4.48168907"/>
TraceCorrelation popSizeStats = traceList.getCorrelationStatistics(traceList.getTraceIndex(ConstantPopulationModelParser.POPULATION_SIZE));
System.out.println("Expectation of Log-Normal(1,1) is e^(M+S^2/2) = e^(1.5) = " + Math.exp(1.5));
assertExpectation(ConstantPopulationModelParser.POPULATION_SIZE, popSizeStats, Math.exp(1.5));
}