當前位置: 首頁>>代碼示例>>Java>>正文


Java RelationUtil.dimensionality方法代碼示例

本文整理匯總了Java中de.lmu.ifi.dbs.elki.database.relation.RelationUtil.dimensionality方法的典型用法代碼示例。如果您正苦於以下問題:Java RelationUtil.dimensionality方法的具體用法?Java RelationUtil.dimensionality怎麽用?Java RelationUtil.dimensionality使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在de.lmu.ifi.dbs.elki.database.relation.RelationUtil的用法示例。


在下文中一共展示了RelationUtil.dimensionality方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: make

import de.lmu.ifi.dbs.elki.database.relation.RelationUtil; //導入方法依賴的package包/類
/**
 * Static constructor from an existing relation.
 * 
 * @param relation Relation to use
 * @param ids IDs to use
 * @return Centroid
 */
public static Centroid make(Relation<? extends NumberVector> relation, DBIDs ids) {
  final int dim = RelationUtil.dimensionality(relation);
  Centroid c = new Centroid(dim);
  double[] elems = c.elements;
  int count = 0;
  for(DBIDIter iter = ids.iter(); iter.valid(); iter.advance()) {
    NumberVector v = relation.get(iter);
    for(int i = 0; i < dim; i++) {
      elems[i] += v.doubleValue(i);
    }
    count += 1;
  }
  if(count == 0) {
    return c;
  }
  for(int i = 0; i < dim; i++) {
    elems[i] /= count;
  }
  c.wsum = count;
  return c;
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:29,代碼來源:Centroid.java

示例2: splitCentroid

import de.lmu.ifi.dbs.elki.database.relation.RelationUtil; //導入方法依賴的package包/類
/**
 * Split an existing centroid into two initial centers.
 *
 * @param parentCluster Existing cluster
 * @param relation Data relation
 * @return List of new centroids
 */
protected double[][] splitCentroid(Cluster<? extends MeanModel> parentCluster, Relation<V> relation) {
  double[] parentCentroid = parentCluster.getModel().getMean();

  // Compute size of cluster/region
  double radius = 0.;
  for(DBIDIter it = parentCluster.getIDs().iter(); it.valid(); it.advance()) {
    double d = getDistanceFunction().distance(relation.get(it), DoubleVector.wrap(parentCentroid));
    radius = (d > radius) ? d : radius;
  }

  // Choose random vector
  Random random = rnd.getSingleThreadedRandom();
  final int dim = RelationUtil.dimensionality(relation);
  double[] randomVector = normalize(MathUtil.randomDoubleArray(dim, random));
  timesEquals(randomVector, (.4 + random.nextDouble() * .5) * radius);

  // Get the new centroids
  double[][] vecs = new double[2][];
  vecs[0] = minus(parentCentroid, randomVector);
  vecs[1] = plusEquals(randomVector, parentCentroid);
  return vecs;
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:30,代碼來源:XMeans.java

示例3: ZCurveTransformer

import de.lmu.ifi.dbs.elki.database.relation.RelationUtil; //導入方法依賴的package包/類
/**
 * Constructor.
 * 
 * @param relation Relation to transform
 * @param ids IDs subset to process
 */
public ZCurveTransformer(Relation<? extends NumberVector> relation, DBIDs ids) {
  this.dimensionality = RelationUtil.dimensionality(relation);
  this.minValues = new double[dimensionality];
  this.maxValues = new double[dimensionality];

  // Compute scaling of vector space
  Arrays.fill(minValues, Double.POSITIVE_INFINITY);
  Arrays.fill(maxValues, Double.NEGATIVE_INFINITY);
  for (DBIDIter iter = ids.iter(); iter.valid(); iter.advance()) {
    NumberVector vector = relation.get(iter);
    for(int dim = 0; dim < dimensionality; ++dim) {
      double dimValue = vector.doubleValue(dim);
      minValues[dim] = Math.min(minValues[dim], dimValue);
      maxValues[dim] = Math.max(maxValues[dim], dimValue);
    }
  }
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:24,代碼來源:ZCurveTransformer.java

示例4: run

import de.lmu.ifi.dbs.elki.database.relation.RelationUtil; //導入方法依賴的package包/類
/**
 * Process a relation.
 * 
 * @param relation Data relation
 * @return Change points
 */
public ChangePoints run(Relation<NumberVector> relation) {
  if(!(relation.getDBIDs() instanceof ArrayDBIDs)) {
    throw new AbortException("This implementation may only be used on static databases, with ArrayDBIDs to provide a clear order.");
  }
  final ArrayDBIDs ids = (ArrayDBIDs) relation.getDBIDs();
  final int dim = RelationUtil.dimensionality(relation);
  ewma = new double[dim];
  ewmv = new double[dim];
  weight = 0.;

  ChangePoints changepoints = new ChangePoints("Signi-Trend Changepoints", "signitrend-changepoints");
  WritableDoubleDataStore vals = DataStoreUtil.makeDoubleStorage(ids, DataStoreFactory.HINT_DB | DataStoreFactory.HINT_SORTED | DataStoreFactory.HINT_STATIC);
  DoubleMinMax mm = new DoubleMinMax();
  for(DBIDIter iter = relation.iterDBIDs(); iter.valid(); iter.advance()) {
    double absmax = processRow(iter, relation.get(iter), changepoints);
    vals.putDouble(iter, absmax); // Store absolute maximum
    mm.put(absmax);
  }
  OutlierScoreMeta meta = new BasicOutlierScoreMeta(mm.getMin(), mm.getMax(), 0, Double.POSITIVE_INFINITY, 0.);
  DoubleRelation scores = new MaterializedDoubleRelation("Signi-Trend scores", "signitrend-scores", vals, relation.getDBIDs());
  changepoints.addChildResult(new OutlierResult(meta, scores));
  return changepoints;
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:30,代碼來源:SigniTrendChangeDetection.java

示例5: testSorting

import de.lmu.ifi.dbs.elki.database.relation.RelationUtil; //導入方法依賴的package包/類
@Test
public void testSorting() {
  Database db = AbstractSimpleAlgorithmTest.makeSimpleDatabase(filename, -1);
  Relation<? extends NumberVector> rel = db.getRelation(TypeUtil.NUMBER_VECTOR_FIELD);

  ArrayModifiableDBIDs ids = DBIDUtil.newArray(rel.getDBIDs());
  final int size = rel.size();

  int dims = RelationUtil.dimensionality(rel);
  SortDBIDsBySingleDimension sorter = new VectorUtil.SortDBIDsBySingleDimension(rel);

  for(int d = 0; d < dims; d++) {
    sorter.setDimension(d);
    ids.sort(sorter);
    assertEquals("Lost some DBID during sorting?!?", size, DBIDUtil.newHashSet(ids).size());

    DBIDArrayIter it = ids.iter();
    double prev = rel.get(it).doubleValue(d);
    for(it.advance(); it.valid(); it.advance()) {
      double next = rel.get(it).doubleValue(d);
      assertTrue("Not correctly sorted: " + prev + " > " + next + " at pos " + it.getOffset(), prev <= next);
      prev = next;
    }
  }
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:26,代碼來源:RelationSortingTest.java

示例6: run

import de.lmu.ifi.dbs.elki.database.relation.RelationUtil; //導入方法依賴的package包/類
/**
 * Runs the VOV algorithm on the given database.
 *
 * @param database Database to query
 * @param relation Data to process
 * @return VOV outlier result
 */
public OutlierResult run(Database database, Relation<O> relation) {
  StepProgress stepprog = LOG.isVerbose() ? new StepProgress("VOV", 3) : null;
  DBIDs ids = relation.getDBIDs();
  int dim = RelationUtil.dimensionality(relation);

  LOG.beginStep(stepprog, 1, "Materializing nearest-neighbor sets.");
  KNNQuery<O> knnq = DatabaseUtil.precomputedKNNQuery(database, relation, getDistanceFunction(), k);

  // Compute Volumes
  LOG.beginStep(stepprog, 2, "Computing Volumes.");
  WritableDoubleDataStore vols = DataStoreUtil.makeDoubleStorage(ids, DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_TEMP);
  computeVolumes(knnq, dim, ids, vols);

  // compute VOV of each object
  LOG.beginStep(stepprog, 3, "Computing Variance of Volumes (VOV).");
  WritableDoubleDataStore vovs = DataStoreUtil.makeDoubleStorage(ids, DataStoreFactory.HINT_HOT | DataStoreFactory.HINT_DB);
  // track the maximum value for normalization.
  DoubleMinMax vovminmax = new DoubleMinMax();
  computeVOVs(knnq, ids, vols, vovs, vovminmax);

  LOG.setCompleted(stepprog);

  // Build result representation.
  DoubleRelation scoreResult = new MaterializedDoubleRelation("Variance of Volume", "vov-outlier", vovs, ids);
  OutlierScoreMeta scoreMeta = new BasicOutlierScoreMeta(vovminmax.getMin(), vovminmax.getMax(), 0.0, Double.POSITIVE_INFINITY, 0.0);
  return new OutlierResult(scoreMeta, scoreResult);
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:35,代碼來源:VarianceOfVolume.java

示例7: initialize

import de.lmu.ifi.dbs.elki.database.relation.RelationUtil; //導入方法依賴的package包/類
@Override
public void initialize() {
  sorted = DBIDUtil.newDistanceDBIDList(relation.size());
  dims = RelationUtil.dimensionality(relation);
  for(DBIDIter it = relation.iterDBIDs(); it.valid(); it.advance()) {
    sorted.add(Double.NaN, it);
  }
  buildTree(0, sorted.size(), 0, sorted.iter());
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:10,代碼來源:SmallMemoryKDTree.java

示例8: KernelDensityEstimator

import de.lmu.ifi.dbs.elki.database.relation.RelationUtil; //導入方法依賴的package包/類
/**
 * Constructor.
 * 
 * @param relation Relation to apply to
 */
public KernelDensityEstimator(Relation<V> relation) {
  super();
  this.relation = relation;
  dim = RelationUtil.dimensionality(relation);
  hopttwo = optimalBandwidth(2);
  epsilons = new double[dim + 1];
  Arrays.fill(epsilons, Double.NEGATIVE_INFINITY);
  epsilons[2] = OUTRES.this.eps;
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:15,代碼來源:OUTRES.java

示例9: logLikelihoodAlternate

import de.lmu.ifi.dbs.elki.database.relation.RelationUtil; //導入方法依賴的package包/類
/**
 * Computes log likelihood of an entire clustering.
 *
 * Version as used by Zhao et al.
 *
 * @param relation Data relation
 * @param clustering Clustering
 * @param distanceFunction Distance function
 * @param <V> Vector type
 * @return Log Likelihood.
 */
@Reference(authors = "Q. Zhao, M. Xu, P. Fränti", //
    title = "Knee Point Detection on Bayesian Information Criterion", //
    booktitle = "20th IEEE International Conference on Tools with Artificial Intelligence", //
    url = "http://dx.doi.org/10.1109/ICTAI.2008.154")
public static <V extends NumberVector> double logLikelihoodAlternate(Relation<V> relation, Clustering<? extends MeanModel> clustering, NumberVectorDistanceFunction<? super V> distanceFunction) {
  List<? extends Cluster<? extends MeanModel>> clusters = clustering.getAllClusters();
  // dimensionality of data points
  final int dim = RelationUtil.dimensionality(relation);
  // number of clusters
  final int m = clusters.size();

  // number of objects in the clustering
  int n = 0;
  // cluster sizes
  int[] n_i = new int[m];
  // variances
  double[] d_i = new double[m];

  // Iterate over clusters:
  Iterator<? extends Cluster<? extends MeanModel>> it = clusters.iterator();
  for(int i = 0; it.hasNext(); ++i) {
    Cluster<? extends MeanModel> cluster = it.next();
    n += n_i[i] = cluster.size();
    d_i[i] = varianceOfCluster(cluster, distanceFunction, relation);
  }

  // log likelihood of this clustering
  double logLikelihood = 0.;

  // Aggregate
  for(int i = 0; i < m; i++) {
    logLikelihood += n_i[i] * FastMath.log(n_i[i] / (double) n) // ni log ni/n
        - n_i[i] * dim * .5 * MathUtil.LOGTWOPI // ni*d/2 log2pi
        - n_i[i] * .5 * FastMath.log(d_i[i]) // ni/2 log sigma_i
        - (n_i[i] - m) * .5; // (ni-m)/2
  }
  return logLikelihood;
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:50,代碼來源:AbstractKMeansQualityMeasure.java

示例10: dimensionality

import de.lmu.ifi.dbs.elki.database.relation.RelationUtil; //導入方法依賴的package包/類
/**
 * Ugly hack to allow using this implementation without having a well-defined
 * dimensionality.
 *
 * @param rel Data relation
 * @return Dimensionality
 */
private int dimensionality(Relation<O> rel) {
  // Explicit:
  if(idim >= 0) {
    return idim;
  }
  // Cast to vector field relation.
  @SuppressWarnings("unchecked")
  final Relation<NumberVector> frel = (Relation<NumberVector>) rel;
  int dim = RelationUtil.dimensionality(frel);
  if(dim < 1) {
    throw new AbortException("When using KDEOS with non-vectorspace data, the intrinsic dimensionality parameter must be set!");
  }
  return dim;
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:22,代碼來源:KDEOS.java

示例11: buildRanges

import de.lmu.ifi.dbs.elki.database.relation.RelationUtil; //導入方法依賴的package包/類
/**
 * Grid discretization of the data:<br />
 * Each attribute of data is divided into phi equi-depth ranges.<br />
 * Each range contains a fraction f=1/phi of the records.
 * 
 * @param relation Relation to process
 * @return range map
 */
protected ArrayList<ArrayList<DBIDs>> buildRanges(Relation<V> relation) {
  final int dim = RelationUtil.dimensionality(relation);
  final int size = relation.size();
  final ArrayList<ArrayList<DBIDs>> ranges = new ArrayList<>();

  ArrayModifiableDBIDs ids = DBIDUtil.newArray(relation.getDBIDs());
  SortDBIDsBySingleDimension sorter = new SortDBIDsBySingleDimension(relation);
  // Split into cells
  final double part = size * 1.0 / phi;
  for(int d = 0; d < dim; d++) {
    sorter.setDimension(d);
    ids.sort(sorter);
    ArrayList<DBIDs> dimranges = new ArrayList<>(phi + 1);
    int start = 0;
    DBIDArrayIter iter = ids.iter();
    for(int r = 1; r <= phi; r++) {
      int end = (r < phi) ? (int) (part * r) : size;
      ArrayModifiableDBIDs currange = DBIDUtil.newArray(end - start);
      for(iter.seek(start); iter.getOffset() < end; iter.advance()) {
        currange.add(iter);
      }
      start = end;
      dimranges.add(currange);
    }
    ranges.add(dimranges);
  }
  return ranges;
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:37,代碼來源:AbstractAggarwalYuOutlier.java

示例12: findDimensions

import de.lmu.ifi.dbs.elki.database.relation.RelationUtil; //導入方法依賴的package包/類
/**
 * Refinement step that determines the set of correlated dimensions for each
 * cluster centroid.
 *
 * @param clusters the list of clusters
 * @param database the database containing the objects
 * @return the set of correlated dimensions for each specified cluster
 *         centroid
 */
private List<Pair<double[], long[]>> findDimensions(ArrayList<PROCLUSCluster> clusters, Relation<V> database) {
  // compute x_ij = avg distance from points in c_i to c_i.centroid
  final int dim = RelationUtil.dimensionality(database);
  final int numc = clusters.size();
  double[][] averageDistances = new double[numc][];

  for(int i = 0; i < numc; i++) {
    PROCLUSCluster c_i = clusters.get(i);
    double[] x_i = new double[dim];
    for(DBIDIter iter = c_i.objectIDs.iter(); iter.valid(); iter.advance()) {
      V o = database.get(iter);
      for(int d = 0; d < dim; d++) {
        x_i[d] += Math.abs(c_i.centroid[d] - o.doubleValue(d));
      }
    }
    for(int d = 0; d < dim; d++) {
      x_i[d] /= c_i.objectIDs.size();
    }
    averageDistances[i] = x_i;
  }

  List<DoubleIntInt> z_ijs = computeZijs(averageDistances, dim);
  long[][] dimensionMap = computeDimensionMap(z_ijs, dim, numc);

  // mapping cluster -> dimensions
  List<Pair<double[], long[]>> result = new ArrayList<>(numc);
  for(int i = 0; i < numc; i++) {
    long[] dims_i = dimensionMap[i];
    if(dims_i == null) {
      continue;
    }
    result.add(new Pair<>(clusters.get(i).centroid, dims_i));
  }
  return result;
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:45,代碼來源:PROCLUS.java

示例13: fullRedraw

import de.lmu.ifi.dbs.elki.database.relation.RelationUtil; //導入方法依賴的package包/類
@Override
public void fullRedraw() {
  setupCanvas();
  final StyleLibrary style = context.getStyleLibrary();
  final StylingPolicy spol = context.getStylingPolicy();
  final double size = style.getSize(StyleLibrary.MARKERPLOT);
  final MarkerLibrary ml = style.markers();

  // Only visualize cluster-based policies
  if(!(spol instanceof ClusterStylingPolicy)) {
    return;
  }
  ClusterStylingPolicy cspol = (ClusterStylingPolicy) spol;
  Clustering<?> c = cspol.getClustering();
  // If this is a sample from the uncertain database, it must have a parent
  // relation containing vectors, which is a child to the uncertain
  // database.
  Relation<? extends NumberVector> srel = null;
  boolean isChild = false;
  for(It<Relation<?>> it = context.getHierarchy().iterAncestors(c).filter(Relation.class); it.valid(); it.advance()) {
    Relation<?> r = it.get();
    if(r == this.rel) {
      isChild = true;
    }
    else {
      final SimpleTypeInformation<?> type = r.getDataTypeInformation();
      if(TypeUtil.NUMBER_VECTOR_FIELD.isAssignableFromType(type)) {
        @SuppressWarnings("unchecked")
        Relation<? extends NumberVector> vr = (Relation<? extends NumberVector>) r;
        int dim = RelationUtil.dimensionality(vr);
        if(dim == RelationUtil.dimensionality(this.rel)) {
          srel = vr;
        }
      }
    }
    if(isChild && srel != null) {
      break;
    }
  }
  // Nothing found, probably in a different subtree.
  if(!isChild || srel == null) {
    return;
  }
  for(int cnum = cspol.getMinStyle(); cnum < cspol.getMaxStyle(); cnum++) {
    for(DBIDIter iter = cspol.iterateClass(cnum); iter.valid(); iter.advance()) {
      if(!sample.getSample().contains(iter)) {
        continue; // TODO: can we test more efficiently than this?
      }
      try {
        final NumberVector vec = srel.get(iter);
        double[] v = proj.fastProjectDataToRenderSpace(vec);
        if(v[0] != v[0] || v[1] != v[1]) {
          continue; // NaN!
        }
        ml.useMarker(svgp, layer, v[0], v[1], cnum, size);
      }
      catch(ObjectNotFoundException e) {
        // ignore.
      }
    }
  }
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:63,代碼來源:UncertainInstancesVisualization.java

示例14: initializeCapacities

import de.lmu.ifi.dbs.elki.database.relation.RelationUtil; //導入方法依賴的package包/類
@Override
protected void initializeCapacities(MTreeEntry exampleLeaf) {
  int distanceSize = ByteArrayUtil.SIZE_DOUBLE; // exampleLeaf.getParentDistance().externalizableSize();

  // FIXME: simulate a proper feature size!
  @SuppressWarnings("unchecked")
  Relation<? extends SpatialComparable> vrel = (Relation<? extends SpatialComparable>) relation;
  final int dim = RelationUtil.dimensionality(vrel);
  int featuresize = 8 * dim;
  if(dim <= 0) {
    getLogger().warning("Relation does not have a dimensionality -- simulating M-tree as external index!");
    featuresize = 0;
  }

  // overhead = index(4), numEntries(4), id(4), isLeaf(0.125)
  double overhead = 12.125;
  if(getPageSize() - overhead < 0) {
    throw new RuntimeException("Node size of " + getPageSize() + " Bytes is chosen too small!");
  }

  // dirCapacity = (pageSize - overhead) / (nodeID + objectID + coveringRadius
  // + parentDistance) + 1
  // dirCapacity = (int) (pageSize - overhead) / (4 + 4 + distanceSize +
  // distanceSize) + 1;

  // dirCapacity = (pageSize - overhead) / (nodeID + **object feature size** +
  // coveringRadius + parentDistance) + 1
  dirCapacity = (int) (getPageSize() - overhead) / (4 + featuresize + distanceSize + distanceSize) + 1;

  if(dirCapacity <= 2) {
    throw new RuntimeException("Node size of " + getPageSize() + " Bytes is chosen too small!");
  }

  if(dirCapacity < 10) {
    getLogger().warning("Page size is choosen too small! Maximum number of entries " + "in a directory node = " + (dirCapacity - 1));
  }
  // leafCapacity = (pageSize - overhead) / (objectID + parentDistance) + 1
  // leafCapacity = (int) (pageSize - overhead) / (4 + distanceSize) + 1;
  // leafCapacity = (pageSize - overhead) / (objectID + ** object size ** +
  // parentDistance) + 1
  leafCapacity = (int) (getPageSize() - overhead) / (4 + featuresize + distanceSize) + 1;

  if(leafCapacity <= 1) {
    throw new RuntimeException("Node size of " + getPageSize() + " Bytes is chosen too small!");
  }

  if(leafCapacity < 10) {
    getLogger().warning("Page size is choosen too small! Maximum number of entries " + "in a leaf node = " + (leafCapacity - 1));
  }
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:51,代碼來源:MTreeIndex.java

示例15: run

import de.lmu.ifi.dbs.elki.database.relation.RelationUtil; //導入方法依賴的package包/類
/**
 * Performs the ORCLUS algorithm on the given database.
 * 
 * @param database Database
 * @param relation Relation
 */
public Clustering<Model> run(Database database, Relation<V> relation) {
  // current dimensionality associated with each seed
  int dim_c = RelationUtil.dimensionality(relation);

  if(dim_c < l) {
    throw new IllegalStateException("Dimensionality of data < parameter l! " + "(" + dim_c + " < " + l + ")");
  }

  // current number of seeds
  int k_c = Math.min(relation.size(), k_i * k);

  // pick k0 > k points from the database
  List<ORCLUSCluster> clusters = initialSeeds(relation, k_c);

  double beta = FastMath.exp(-FastMath.log(dim_c / (double) l) * FastMath.log(1 / alpha) / FastMath.log(k_c / (double) k));

  IndefiniteProgress cprogress = LOG.isVerbose() ? new IndefiniteProgress("Current number of clusters:", LOG) : null;

  while(k_c > k) {
    // find partitioning induced by the seeds of the clusters
    assign(relation, clusters);

    // determine current subspace associated with each cluster
    for(ORCLUSCluster cluster : clusters) {
      if(cluster.objectIDs.size() > 0) {
        cluster.basis = findBasis(relation, cluster, dim_c);
      }
    }

    // reduce number of seeds and dimensionality associated with
    // each seed
    k_c = (int) Math.max(k, k_c * alpha);
    dim_c = (int) Math.max(l, dim_c * beta);
    merge(relation, clusters, k_c, dim_c, cprogress);
    if(cprogress != null) {
      cprogress.setProcessed(clusters.size(), LOG);
    }
  }
  assign(relation, clusters);

  LOG.setCompleted(cprogress);

  // get the result
  Clustering<Model> r = new Clustering<>("ORCLUS clustering", "orclus-clustering");
  for(ORCLUSCluster c : clusters) {
    r.addToplevelCluster(new Cluster<Model>(c.objectIDs, ClusterModel.CLUSTER));
  }
  return r;
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:56,代碼來源:ORCLUS.java


注:本文中的de.lmu.ifi.dbs.elki.database.relation.RelationUtil.dimensionality方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。