當前位置: 首頁>>代碼示例>>Java>>正文


Java RelationUtil類代碼示例

本文整理匯總了Java中de.lmu.ifi.dbs.elki.database.relation.RelationUtil的典型用法代碼示例。如果您正苦於以下問題:Java RelationUtil類的具體用法?Java RelationUtil怎麽用?Java RelationUtil使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


RelationUtil類屬於de.lmu.ifi.dbs.elki.database.relation包,在下文中一共展示了RelationUtil類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: getReferencePoints

import de.lmu.ifi.dbs.elki.database.relation.RelationUtil; //導入依賴的package包/類
@Override
public Collection<? extends NumberVector> getReferencePoints(Relation<? extends NumberVector> db) {
  double[][] minmax = RelationUtil.computeMinMax(db);
  int dim = RelationUtil.dimensionality(db);

  // Compute mean and extend from minmax.
  double[] mean = minmax[0], delta = minmax[1];
  for(int d = 0; d < dim; d++) {
    delta[d] -= mean[d];
    mean[d] -= delta[d] * .5;
  }

  Random rand = rnd.getSingleThreadedRandom();
  ArrayList<DoubleVector> result = new ArrayList<>(samplesize);
  for(int i = 0; i < samplesize; i++) {
    double[] vec = new double[dim];
    for(int d = 0; d < dim; d++) {
      vec[d] = mean[d] + (rand.nextDouble() - 0.5) * scale * delta[d];
    }
    result.add(DoubleVector.wrap(vec));
  }

  return result;
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:25,代碼來源:RandomGeneratedReferencePoints.java

示例2: run

import de.lmu.ifi.dbs.elki.database.relation.RelationUtil; //導入依賴的package包/類
/**
 * Process a relation.
 * 
 * @param relation Data relation
 * @return Change points
 */
public ChangePoints run(Relation<NumberVector> relation) {
  if(!(relation.getDBIDs() instanceof ArrayDBIDs)) {
    throw new AbortException("This implementation may only be used on static databases, with ArrayDBIDs to provide a clear order.");
  }
  final ArrayDBIDs ids = (ArrayDBIDs) relation.getDBIDs();
  final int dim = RelationUtil.dimensionality(relation);
  ewma = new double[dim];
  ewmv = new double[dim];
  weight = 0.;

  ChangePoints changepoints = new ChangePoints("Signi-Trend Changepoints", "signitrend-changepoints");
  WritableDoubleDataStore vals = DataStoreUtil.makeDoubleStorage(ids, DataStoreFactory.HINT_DB | DataStoreFactory.HINT_SORTED | DataStoreFactory.HINT_STATIC);
  DoubleMinMax mm = new DoubleMinMax();
  for(DBIDIter iter = relation.iterDBIDs(); iter.valid(); iter.advance()) {
    double absmax = processRow(iter, relation.get(iter), changepoints);
    vals.putDouble(iter, absmax); // Store absolute maximum
    mm.put(absmax);
  }
  OutlierScoreMeta meta = new BasicOutlierScoreMeta(mm.getMin(), mm.getMax(), 0, Double.POSITIVE_INFINITY, 0.);
  DoubleRelation scores = new MaterializedDoubleRelation("Signi-Trend scores", "signitrend-scores", vals, relation.getDBIDs());
  changepoints.addChildResult(new OutlierResult(meta, scores));
  return changepoints;
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:30,代碼來源:SigniTrendChangeDetection.java

示例3: run

import de.lmu.ifi.dbs.elki.database.relation.RelationUtil; //導入依賴的package包/類
/**
 * Run the change point detection algorithm on a data relation.
 * 
 * @param relation Data relation.
 * @return Change points
 */
public ChangePoints run(Relation<DoubleVector> relation) {
  final ArrayDBIDs ids = (ArrayDBIDs) relation.getDBIDs();
  final int dim = RelationUtil.dimensionality(relation);
  final int size = ids.size();
  iter = ids.iter();

  column = new double[size];
  sums = new double[size];
  bstrap = new double[size];
  result = new ChangePoints("CUSUM Changepoints", "cusum-changepoints");

  for(columnnr = 0; columnnr < dim; columnnr++) {
    // Materialize one column of the data.
    for(iter.seek(0); iter.valid(); iter.advance()) {
      column[iter.getOffset()] = relation.get(iter).doubleValue(columnnr);
    }
    cusum(column, sums, 0, size);
    multipleChangepointsWithConfidence(0, size);
  }
  return result;
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:28,代碼來源:OfflineChangePointDetectionAlgorithm.java

示例4: chooseInitialMeans

import de.lmu.ifi.dbs.elki.database.relation.RelationUtil; //導入依賴的package包/類
@Override
public <T extends NumberVector> double[][] chooseInitialMeans(Database database, Relation<T> relation, int k, NumberVectorDistanceFunction<? super T> distanceFunction) {
  final int dim = RelationUtil.dimensionality(relation);
  double[][] minmax = RelationUtil.computeMinMax(relation);
  double[] min = minmax[0], scale = minmax[1];
  for(int d = 0; d < dim; d++) {
    scale[d] = scale[d] - min[d];
  }
  double[][] means = new double[k][];
  final Random random = rnd.getSingleThreadedRandom();
  for(int i = 0; i < k; i++) {
    double[] r = MathUtil.randomDoubleArray(dim, random);
    // Rescale
    for(int d = 0; d < dim; d++) {
      r[d] = min[d] + scale[d] * r[d];
    }
    means[i] = r;
  }
  return means;
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:21,代碼來源:RandomlyGeneratedInitialMeans.java

示例5: splitCentroid

import de.lmu.ifi.dbs.elki.database.relation.RelationUtil; //導入依賴的package包/類
/**
 * Split an existing centroid into two initial centers.
 *
 * @param parentCluster Existing cluster
 * @param relation Data relation
 * @return List of new centroids
 */
protected double[][] splitCentroid(Cluster<? extends MeanModel> parentCluster, Relation<V> relation) {
  double[] parentCentroid = parentCluster.getModel().getMean();

  // Compute size of cluster/region
  double radius = 0.;
  for(DBIDIter it = parentCluster.getIDs().iter(); it.valid(); it.advance()) {
    double d = getDistanceFunction().distance(relation.get(it), DoubleVector.wrap(parentCentroid));
    radius = (d > radius) ? d : radius;
  }

  // Choose random vector
  Random random = rnd.getSingleThreadedRandom();
  final int dim = RelationUtil.dimensionality(relation);
  double[] randomVector = normalize(MathUtil.randomDoubleArray(dim, random));
  timesEquals(randomVector, (.4 + random.nextDouble() * .5) * radius);

  // Get the new centroids
  double[][] vecs = new double[2][];
  vecs[0] = minus(parentCentroid, randomVector);
  vecs[1] = plusEquals(randomVector, parentCentroid);
  return vecs;
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:30,代碼來源:XMeans.java

示例6: determinePreferenceVector

import de.lmu.ifi.dbs.elki.database.relation.RelationUtil; //導入依賴的package包/類
/**
 * Determines the preference vector according to the specified neighbor ids.
 *
 * @param relation the database storing the objects
 * @param id the id of the object for which the preference vector should be
 *        determined
 * @param neighborIDs the ids of the neighbors
 * @param msg a string buffer for debug messages
 * @return the preference vector
 */
private long[] determinePreferenceVector(Relation<V> relation, DBIDRef id, DBIDs neighborIDs, StringBuilder msg) {
  // variances
  double[] variances = RelationUtil.variances(relation, relation.get(id), neighborIDs);

  // preference vector
  long[] preferenceVector = BitsUtil.zero(variances.length);
  for(int d = 0; d < variances.length; d++) {
    if(variances[d] < alpha) {
      BitsUtil.setI(preferenceVector, d);
    }
  }

  if(msg != null && LOG.isDebugging()) {
    msg.append("\nalpha ").append(alpha);
    msg.append("\nvariances ");
    msg.append(FormatUtil.format(variances, ", ", FormatUtil.NF4));
    msg.append("\npreference ");
    msg.append(BitsUtil.toStringLow(preferenceVector, variances.length));
  }

  return preferenceVector;
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:33,代碼來源:HiSCPreferenceVectorIndex.java

示例7: computeSimilarityMatrix

import de.lmu.ifi.dbs.elki.database.relation.RelationUtil; //導入依賴的package包/類
/**
 * Compute a column-wise dependency matrix for the given relation.
 * 
 * @param sim Dependence measure
 * @param rel Vector relation
 * @return Similarity matrix (lower triangular form)
 */
public static double[] computeSimilarityMatrix(DependenceMeasure sim, Relation<? extends NumberVector> rel) {
  final int dim = RelationUtil.dimensionality(rel);
  final int size = rel.size();
  // TODO: we could use less memory (no copy), but this would likely be
  // slower. Maybe as a fallback option?
  double[][] data = new double[dim][size];
  int r = 0;
  for(DBIDIter it = rel.iterDBIDs(); it.valid(); it.advance(), r++) {
    NumberVector v = rel.get(it);
    for(int d = 0; d < dim; d++) {
      data[d][r] = v.doubleValue(d);
    }
  }
  return sim.dependence(DoubleArrayAdapter.STATIC, Arrays.asList(data));
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:23,代碼來源:AbstractLayout3DPC.java

示例8: processNewResult

import de.lmu.ifi.dbs.elki.database.relation.RelationUtil; //導入依賴的package包/類
@SuppressWarnings("unchecked")
@Override
public void processNewResult(VisualizerContext context, Object result) {
  VisualizationTree.findNewResultVis(context, result, Relation.class, ScatterPlotProjector.class, (rel, p) -> {
    if(!TypeUtil.POLYGON_TYPE.isAssignableFromType(rel.getDataTypeInformation())) {
      return;
    }
    if(RelationUtil.dimensionality((Relation<? extends PolygonsObject>) rel) != 2) {
      return;
    }
    // Assume that a 2d projector is using the same coordinates as the
    // polygons.
    final VisualizationTask task = new VisualizationTask(this, NAME, rel, rel) //
        .level(VisualizationTask.LEVEL_DATA - 10) //
        .with(UpdateFlag.ON_DATA);
    context.addVis(rel, task);
    context.addVis(p, task);
  });
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:20,代碼來源:PolygonVisualization.java

示例9: processNewResult

import de.lmu.ifi.dbs.elki.database.relation.RelationUtil; //導入依賴的package包/類
@Override
public void processNewResult(VisualizerContext context, Object start) {
  VisualizationTree.findNewResults(context, start).filter(Relation.class).forEach(rel -> {
    if(!TypeUtil.NUMBER_VECTOR_FIELD.isAssignableFromType(rel.getDataTypeInformation())) {
      return;
    }
    // Do not enable nested relations by default:
    for(It<Relation<?>> it2 = context.getHierarchy().iterAncestors(rel).filter(Relation.class); it2.valid(); it2.advance()) {
      // Parent relation
      final Relation<?> rel2 = it2.get();
      if(TypeUtil.SPATIAL_OBJECT.isAssignableFromType(rel2.getDataTypeInformation())) {
        return;
      }
      // TODO: add Actions instead.
    }
    @SuppressWarnings("unchecked")
    Relation<NumberVector> vrel = (Relation<NumberVector>) rel;
    final int dim = RelationUtil.dimensionality(vrel);
    HistogramProjector<NumberVector> proj = new HistogramProjector<>(vrel, Math.min(dim, maxdim));
    context.addVis(vrel, proj);
  });
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:23,代碼來源:HistogramFactory.java

示例10: applyPrescaling

import de.lmu.ifi.dbs.elki.database.relation.RelationUtil; //導入依賴的package包/類
/**
 * Prescale each vector (except when in {@code skip}) with the given scaling
 * function.
 *
 * @param scaling Scaling function
 * @param relation Relation to read
 * @param skip DBIDs to pass unmodified
 * @return New relation
 */
public static Relation<NumberVector> applyPrescaling(ScalingFunction scaling, Relation<NumberVector> relation, DBIDs skip) {
  if(scaling == null) {
    return relation;
  }
  NumberVector.Factory<NumberVector> factory = RelationUtil.getNumberVectorFactory(relation);
  DBIDs ids = relation.getDBIDs();
  WritableDataStore<NumberVector> contents = DataStoreUtil.makeStorage(ids, DataStoreFactory.HINT_HOT, NumberVector.class);
  for(DBIDIter iter = ids.iter(); iter.valid(); iter.advance()) {
    NumberVector v = relation.get(iter);
    double[] raw = v.toArray();
    if(!skip.contains(iter)) {
      applyScaling(raw, scaling);
    }
    contents.put(iter, factory.newNumberVector(raw, ArrayLikeUtil.DOUBLEARRAYADAPTER));
  }
  return new MaterializedRelation<>(relation.getDataTypeInformation(), ids, "rescaled", contents);
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:27,代碼來源:GreedyEnsembleExperiment.java

示例11: run

import de.lmu.ifi.dbs.elki.database.relation.RelationUtil; //導入依賴的package包/類
/**
 * Computes quantitatively linear dependencies among the attributes of the
 * given database based on a linear correlation PCA.
 *
 * @param database the database to run this DependencyDerivator on
 * @param relation the relation to use
 * @return the CorrelationAnalysisSolution computed by this
 *         DependencyDerivator
 */
public CorrelationAnalysisSolution<V> run(Database database, Relation<V> relation) {
  if(LOG.isVerbose()) {
    LOG.verbose("retrieving database objects...");
  }
  Centroid centroid = Centroid.make(relation, relation.getDBIDs());
  NumberVector.Factory<V> factory = RelationUtil.getNumberVectorFactory(relation);
  V centroidDV = factory.newNumberVector(centroid.getArrayRef());
  DBIDs ids;
  if(this.sampleSize > 0) {
    if(randomsample) {
      ids = DBIDUtil.randomSample(relation.getDBIDs(), this.sampleSize, RandomFactory.DEFAULT);
    }
    else {
      DistanceQuery<V> distanceQuery = database.getDistanceQuery(relation, getDistanceFunction());
      KNNList queryResults = database.getKNNQuery(distanceQuery, this.sampleSize)//
          .getKNNForObject(centroidDV, this.sampleSize);
      ids = DBIDUtil.newHashSet(queryResults);
    }
  }
  else {
    ids = relation.getDBIDs();
  }

  return generateModel(relation, ids, centroid.getArrayRef());
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:35,代碼來源:DependencyDerivator.java

示例12: run

import de.lmu.ifi.dbs.elki.database.relation.RelationUtil; //導入依賴的package包/類
/**
 * Add scales to a single vector relation.
 *
 * @param rel Relation
 * @return Scales
 */
private ScalesResult run(Relation<? extends NumberVector> rel) {
  double[][] mms = RelationUtil.computeMinMax(rel);
  int dim = mms[0].length;
  double delta = 0.;
  for(int d = 0; d < dim; d++) {
    double del = mms[1][d] - mms[0][d];
    delta = del > delta ? del : delta;
  }
  if(delta < Double.MIN_NORMAL) {
    delta = 1.;
  }
  int log10res = (int) Math.ceil(Math.log10(delta / (LinearScale.MAXTICKS - 1)));
  double res = MathUtil.powi(10, log10res);
  double target = Math.ceil(delta / res) * res; // Target width
  LinearScale[] scales = new LinearScale[dim];
  for(int d = 0; d < dim; d++) {
    double mid = (mms[0][d] + mms[1][d] - target) * .5;
    double min = Math.floor(mid / res) * res;
    double max = Math.ceil((mid + target) / res) * res;
    scales[d] = new LinearScale(min, max);
  }
  return new ScalesResult(scales);
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:30,代碼來源:AddUniformScale.java

示例13: testSorting

import de.lmu.ifi.dbs.elki.database.relation.RelationUtil; //導入依賴的package包/類
@Test
public void testSorting() {
  Database db = AbstractSimpleAlgorithmTest.makeSimpleDatabase(filename, -1);
  Relation<? extends NumberVector> rel = db.getRelation(TypeUtil.NUMBER_VECTOR_FIELD);

  ArrayModifiableDBIDs ids = DBIDUtil.newArray(rel.getDBIDs());
  final int size = rel.size();

  int dims = RelationUtil.dimensionality(rel);
  SortDBIDsBySingleDimension sorter = new VectorUtil.SortDBIDsBySingleDimension(rel);

  for(int d = 0; d < dims; d++) {
    sorter.setDimension(d);
    ids.sort(sorter);
    assertEquals("Lost some DBID during sorting?!?", size, DBIDUtil.newHashSet(ids).size());

    DBIDArrayIter it = ids.iter();
    double prev = rel.get(it).doubleValue(d);
    for(it.advance(); it.valid(); it.advance()) {
      double next = rel.get(it).doubleValue(d);
      assertTrue("Not correctly sorted: " + prev + " > " + next + " at pos " + it.getOffset(), prev <= next);
      prev = next;
    }
  }
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:26,代碼來源:RelationSortingTest.java

示例14: loglikelihoodNormal

import de.lmu.ifi.dbs.elki.database.relation.RelationUtil; //導入依賴的package包/類
/**
 * Computes the loglikelihood of all normal objects. Gaussian model
 *
 * @param objids Object IDs for 'normal' objects.
 * @param relation Database
 * @return loglikelihood for normal objects
 */
private double loglikelihoodNormal(DBIDs objids, Relation<V> relation) {
  if(objids.isEmpty()) {
    return 0;
  }
  CovarianceMatrix builder = CovarianceMatrix.make(relation, objids);
  double[] mean = builder.getMeanVector();
  double[][] covarianceMatrix = builder.destroyToSampleMatrix();

  // test singulaere matrix
  double[][] covInv = inverse(covarianceMatrix);

  double covarianceDet = new LUDecomposition(covarianceMatrix).det();
  double fakt = 1.0 / FastMath.sqrt(MathUtil.powi(MathUtil.TWOPI, RelationUtil.dimensionality(relation)) * covarianceDet);
  // for each object compute probability and sum
  double prob = 0;
  for(DBIDIter iter = objids.iter(); iter.valid(); iter.advance()) {
    double[] x = minusEquals(relation.get(iter).toArray(), mean);
    double mDist = transposeTimesTimes(x, covInv, x);
    prob += FastMath.log(fakt * FastMath.exp(-mDist * .5));
  }
  return prob;
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:30,代碼來源:GaussianUniformMixture.java

示例15: runOnlineLOF

import de.lmu.ifi.dbs.elki.database.relation.RelationUtil; //導入依賴的package包/類
/**
 * Run OnlineLOF (with insertions and removals) on database.
 */
@SuppressWarnings("unchecked")
private static OutlierResult runOnlineLOF(UpdatableDatabase db) {
  Relation<DoubleVector> rep = db.getRelation(TypeUtil.DOUBLE_VECTOR_FIELD);

  // setup algorithm
  OnlineLOF<DoubleVector> lof = new OnlineLOF<>(k, k, neighborhoodDistanceFunction, reachabilityDistanceFunction);

  // run OnlineLOF on database
  OutlierResult result = lof.run(db);

  // insert new objects
  ArrayList<DoubleVector> insertions = new ArrayList<>();
  NumberVector.Factory<DoubleVector> o = RelationUtil.getNumberVectorFactory(rep);
  int dim = RelationUtil.dimensionality(rep);
  Random random = new Random(seed);
  for(int i = 0; i < size; i++) {
    DoubleVector obj = VectorUtil.randomVector(o, dim, random);
    insertions.add(obj);
  }
  DBIDs deletions = db.insert(MultipleObjectsBundle.makeSimple(rep.getDataTypeInformation(), insertions));

  // delete objects
  db.delete(deletions);
  return result;
}
 
開發者ID:elki-project,項目名稱:elki,代碼行數:29,代碼來源:OnlineLOFTest.java


注:本文中的de.lmu.ifi.dbs.elki.database.relation.RelationUtil類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。