當前位置: 首頁>>代碼示例>>Golang>>正文


Golang Instances.GetClassDistributionAfterSplit方法代碼示例

本文整理匯總了Golang中github.com/sjwhitworth/golearn/base.Instances.GetClassDistributionAfterSplit方法的典型用法代碼示例。如果您正苦於以下問題:Golang Instances.GetClassDistributionAfterSplit方法的具體用法?Golang Instances.GetClassDistributionAfterSplit怎麽用?Golang Instances.GetClassDistributionAfterSplit使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在github.com/sjwhitworth/golearn/base.Instances的用法示例。


在下文中一共展示了Instances.GetClassDistributionAfterSplit方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。

示例1: GetSplitAttributeFromSelection

// GetSplitAttributeFromSelection returns the class Attribute which maximises
// the information gain amongst consideredAttributes
//
// IMPORTANT: passing a zero-length consideredAttributes parameter will panic()
func (r *InformationGainRuleGenerator) GetSplitAttributeFromSelection(consideredAttributes []int, f *base.Instances) base.Attribute {

	// Next step is to compute the information gain at this node
	// for each randomly chosen attribute, and pick the one
	// which maximises it
	maxGain := math.Inf(-1)
	selectedAttribute := -1

	// Compute the base entropy
	classDist := f.GetClassDistribution()
	baseEntropy := getBaseEntropy(classDist)

	// Compute the information gain for each attribute
	for _, s := range consideredAttributes {
		proposedClassDist := f.GetClassDistributionAfterSplit(f.GetAttr(s))
		localEntropy := getSplitEntropy(proposedClassDist)
		informationGain := baseEntropy - localEntropy
		if informationGain > maxGain {
			maxGain = informationGain
			selectedAttribute = s
		}
	}

	// Pick the one which maximises IG
	return f.GetAttr(selectedAttribute)
}
開發者ID:njern,項目名稱:golearn,代碼行數:30,代碼來源:entropy.go


注:本文中的github.com/sjwhitworth/golearn/base.Instances.GetClassDistributionAfterSplit方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。