本文整理匯總了Golang中github.com/sjwhitworth/golearn/base.Instances類的典型用法代碼示例。如果您正苦於以下問題:Golang Instances類的具體用法?Golang Instances怎麽用?Golang Instances使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了Instances類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: Prune
// Prune eliminates branches which hurt accuracy
func (d *DecisionTreeNode) Prune(using *base.Instances) {
// If you're a leaf, you're already pruned
if d.Children == nil {
return
} else {
if d.SplitAttr == nil {
return
}
// Recursively prune children of this node
sub := using.DecomposeOnAttributeValues(d.SplitAttr)
for k := range d.Children {
if sub[k] == nil {
continue
}
d.Children[k].Prune(sub[k])
}
}
// Get a baseline accuracy
baselineAccuracy := computeAccuracy(d.Predict(using), using)
// Speculatively remove the children and re-evaluate
tmpChildren := d.Children
d.Children = nil
newAccuracy := computeAccuracy(d.Predict(using), using)
// Keep the children removed if better, else restore
if newAccuracy < baselineAccuracy {
d.Children = tmpChildren
}
}
示例2: GenerateSplitAttribute
// GenerateSplitAttribute returns the best attribute out of those randomly chosen
// which maximises Information Gain
func (r *RandomTreeRuleGenerator) GenerateSplitAttribute(f *base.Instances) base.Attribute {
// First step is to generate the random attributes that we'll consider
maximumAttribute := f.GetAttributeCount()
consideredAttributes := make([]int, r.Attributes)
attrCounter := 0
for {
if len(consideredAttributes) >= r.Attributes {
break
}
selectedAttribute := rand.Intn(maximumAttribute)
fmt.Println(selectedAttribute, attrCounter, consideredAttributes, len(consideredAttributes))
if selectedAttribute != f.ClassIndex {
matched := false
for _, a := range consideredAttributes {
if a == selectedAttribute {
matched = true
break
}
}
if matched {
continue
}
consideredAttributes = append(consideredAttributes, selectedAttribute)
attrCounter++
}
}
return r.internalRule.GetSplitAttributeFromSelection(consideredAttributes, f)
}
示例3: convertInstancesToLabelVec
func convertInstancesToLabelVec(X *base.Instances) []float64 {
labelVec := make([]float64, X.Rows)
for i := 0; i < X.Rows; i++ {
labelVec[i] = X.Get(i, X.ClassIndex)
}
return labelVec
}
示例4: Predict
func (KNN *KNNClassifier) Predict(what *base.Instances) *base.Instances {
ret := what.GeneratePredictionVector()
for i := 0; i < what.Rows; i++ {
ret.SetAttrStr(i, 0, KNN.PredictOne(what.GetRowVectorWithoutClass(i)))
}
return ret
}
示例5: Run
// Run discretises the set of Instances `on'
//
// IMPORTANT: ChiMergeFilter discretises in place.
func (c *ChiMergeFilter) Run(on *base.Instances) {
if !c._Trained {
panic("Call Build() beforehand")
}
for attr := range c.Tables {
table := c.Tables[attr]
for i := 0; i < on.Rows; i++ {
val := on.Get(i, attr)
dis := 0
for j, k := range table {
if k.Value < val {
dis = j
continue
}
break
}
on.Set(i, attr, float64(dis))
}
newAttribute := new(base.CategoricalAttribute)
newAttribute.SetName(on.GetAttr(attr).GetName())
for _, k := range table {
newAttribute.GetSysValFromString(fmt.Sprintf("%f", k.Value))
}
on.ReplaceAttr(attr, newAttribute)
}
}
示例6: GetSplitAttributeFromSelection
// GetSplitAttributeFromSelection returns the class Attribute which maximises
// the information gain amongst consideredAttributes
//
// IMPORTANT: passing a zero-length consideredAttributes parameter will panic()
func (r *InformationGainRuleGenerator) GetSplitAttributeFromSelection(consideredAttributes []int, f *base.Instances) base.Attribute {
// Next step is to compute the information gain at this node
// for each randomly chosen attribute, and pick the one
// which maximises it
maxGain := math.Inf(-1)
selectedAttribute := -1
// Compute the base entropy
classDist := f.GetClassDistribution()
baseEntropy := getBaseEntropy(classDist)
// Compute the information gain for each attribute
for _, s := range consideredAttributes {
proposedClassDist := f.GetClassDistributionAfterSplit(f.GetAttr(s))
localEntropy := getSplitEntropy(proposedClassDist)
informationGain := baseEntropy - localEntropy
if informationGain > maxGain {
maxGain = informationGain
selectedAttribute = s
}
}
// Pick the one which maximises IG
return f.GetAttr(selectedAttribute)
}
示例7: Run
// Run applies a trained BinningFilter to a set of Instances,
// discretising any numeric attributes added.
//
// IMPORTANT: Run discretises in-place, so make sure to take
// a copy if the original instances are still needed
//
// IMPORTANT: This function panic()s if the filter has not been
// trained. Call Build() before running this function
//
// IMPORTANT: Call Build() after adding any additional attributes.
// Otherwise, the training structure will be out of date from
// the values expected and could cause a panic.
func (b *BinningFilter) Run(on *base.Instances) {
if !b.trained {
panic("Call Build() beforehand")
}
for attr := range b.Attributes {
minVal := b.MinVals[attr]
maxVal := b.MaxVals[attr]
disc := 0
// Casts to float32 to replicate a floating point precision error
delta := float32(maxVal - minVal)
delta /= float32(b.BinCount)
for i := 0; i < on.Rows; i++ {
val := on.Get(i, attr)
if val <= minVal {
disc = 0
} else {
disc = int(math.Floor(float64(float32(val-minVal) / delta)))
if disc >= b.BinCount {
disc = b.BinCount - 1
}
}
on.Set(i, attr, float64(disc))
}
newAttribute := new(base.CategoricalAttribute)
newAttribute.SetName(on.GetAttr(attr).GetName())
for i := 0; i < b.BinCount; i++ {
newAttribute.GetSysValFromString(fmt.Sprintf("%d", i))
}
on.ReplaceAttr(attr, newAttribute)
}
}
示例8: convertInstancesToProblemVec
func convertInstancesToProblemVec(X *base.Instances) [][]float64 {
problemVec := make([][]float64, X.Rows)
for i := 0; i < X.Rows; i++ {
problemVecCounter := 0
problemVec[i] = make([]float64, X.Cols-1)
for j := 0; j < X.Cols; j++ {
if j == X.ClassIndex {
continue
}
problemVec[i][problemVecCounter] = X.Get(i, j)
problemVecCounter++
}
}
fmt.Println(problemVec, X)
return problemVec
}
示例9: Predict
func (lr *LogisticRegression) Predict(X *base.Instances) *base.Instances {
ret := X.GeneratePredictionVector()
row := make([]float64, X.Cols-1)
for i := 0; i < X.Rows; i++ {
rowCounter := 0
for j := 0; j < X.Cols; j++ {
if j != X.ClassIndex {
row[rowCounter] = X.Get(i, j)
rowCounter++
}
}
fmt.Println(Predict(lr.model, row), row)
ret.Set(i, 0, Predict(lr.model, row))
}
return ret
}
示例10: Predict
func (lr *LinearRegression) Predict(X *base.Instances) (*base.Instances, error) {
if !lr.fitted {
return nil, NoTrainingDataError
}
ret := X.GeneratePredictionVector()
for i := 0; i < X.Rows; i++ {
var prediction float64 = lr.disturbance
for j := 0; j < X.Cols; j++ {
if j != X.ClassIndex {
prediction += X.Get(i, j) * lr.regressionCoefficients[j]
}
}
ret.Set(i, 0, prediction)
}
return ret, nil
}
示例11: GetConfusionMatrix
// GetConfusionMatrix builds a ConfusionMatrix from a set of reference (`ref')
// and generate (`gen') Instances.
func GetConfusionMatrix(ref *base.Instances, gen *base.Instances) map[string]map[string]int {
if ref.Rows != gen.Rows {
panic("Row counts should match")
}
ret := make(map[string]map[string]int)
for i := 0; i < ref.Rows; i++ {
referenceClass := ref.GetClass(i)
predictedClass := gen.GetClass(i)
if _, ok := ret[referenceClass]; ok {
ret[referenceClass][predictedClass]++
} else {
ret[referenceClass] = make(map[string]int)
ret[referenceClass][predictedClass] = 1
}
}
return ret
}
示例12: Predict
// Predict outputs a base.Instances containing predictions from this tree
func (d *DecisionTreeNode) Predict(what *base.Instances) *base.Instances {
outputAttrs := make([]base.Attribute, 1)
outputAttrs[0] = what.GetClassAttr()
predictions := base.NewInstances(outputAttrs, what.Rows)
for i := 0; i < what.Rows; i++ {
cur := d
for {
if cur.Children == nil {
predictions.SetAttrStr(i, 0, cur.Class)
break
} else {
at := cur.SplitAttr
j := what.GetAttrIndex(at)
if j == -1 {
predictions.SetAttrStr(i, 0, cur.Class)
break
}
classVar := at.GetStringFromSysVal(what.Get(i, j))
if next, ok := cur.Children[classVar]; ok {
cur = next
} else {
var bestChild string
for c := range cur.Children {
bestChild = c
if c > classVar {
break
}
}
cur = cur.Children[bestChild]
}
}
}
}
return predictions
}
示例13: ChiMBuildFrequencyTable
func ChiMBuildFrequencyTable(attr int, inst *base.Instances) []*FrequencyTableEntry {
ret := make([]*FrequencyTableEntry, 0)
var attribute *base.FloatAttribute
attribute, ok := inst.GetAttr(attr).(*base.FloatAttribute)
if !ok {
panic("only use Chi-M on numeric stuff")
}
for i := 0; i < inst.Rows; i++ {
value := inst.Get(i, attr)
valueConv := attribute.GetUsrVal(value)
class := inst.GetClass(i)
// Search the frequency table for the value
found := false
for _, entry := range ret {
if entry.Value == valueConv {
found = true
entry.Frequency[class] += 1
}
}
if !found {
newEntry := &FrequencyTableEntry{
valueConv,
make(map[string]int),
}
newEntry.Frequency[class] = 1
ret = append(ret, newEntry)
}
}
return ret
}
示例14: generateTrainingAttrs
// generateTrainingAttrs selects RandomFeatures number of base.Attributes from
// the provided base.Instances.
func (b *BaggedModel) generateTrainingAttrs(model int, from *base.Instances) []base.Attribute {
ret := make([]base.Attribute, 0)
if b.RandomFeatures == 0 {
for j := 0; j < from.Cols; j++ {
attr := from.GetAttr(j)
ret = append(ret, attr)
}
} else {
for {
if len(ret) >= b.RandomFeatures {
break
}
attrIndex := rand.Intn(from.Cols)
if attrIndex == from.ClassIndex {
continue
}
attr := from.GetAttr(attrIndex)
matched := false
for _, a := range ret {
if a.Equals(attr) {
matched = true
break
}
}
if !matched {
ret = append(ret, attr)
}
}
}
ret = append(ret, from.GetClassAttr())
b.lock.Lock()
b.selectedAttributes[model] = ret
b.lock.Unlock()
return ret
}
示例15: generateTrainingInstances
// generateTrainingInstances generates RandomFeatures number of
// attributes and returns a modified version of base.Instances
// for training the model
func (b *BaggedModel) generateTrainingInstances(model int, from *base.Instances) *base.Instances {
insts := from.SampleWithReplacement(from.Rows)
selected := b.generateTrainingAttrs(model, from)
return insts.SelectAttributes(selected)
}