本文整理匯總了Golang中github.com/hrautila/go/opt/matrix.Matrix.NumElements方法的典型用法代碼示例。如果您正苦於以下問題:Golang Matrix.NumElements方法的具體用法?Golang Matrix.NumElements怎麽用?Golang Matrix.NumElements使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類github.com/hrautila/go/opt/matrix.Matrix
的用法示例。
在下文中一共展示了Matrix.NumElements方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: Getri
/*
Inverse of a real or complex matrix.
Getri(A, ipiv, n=A.Rows, ldA = max(1,A.Rows), offsetA=0)
PURPOSE
Computes the inverse of real or complex matrix of order n. On
entry, A and ipiv contain the LU factorization, as returned by
gesv() or getrf(). On exit A is replaced by the inverse.
ARGUMENTS
A float or complex matrix
ipiv int vector
OPTIONS
n nonnegative integer. If negative, the default value is used.
ldA positive integer. ldA >= max(1,n). If zero, the default
value is used.
offsetA nonnegative integer;
*/
func Getri(A matrix.Matrix, ipiv []int32, opts ...linalg.Option) error {
ind := linalg.GetIndexOpts(opts...)
if ind.N < 0 {
ind.N = A.Cols()
}
if ind.N == 0 {
return nil
}
if ind.LDa == 0 {
ind.LDa = max(1, A.Rows())
}
if ind.OffsetA < 0 {
return errors.New("lda")
}
sizeA := A.NumElements()
if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.N {
return errors.New("sizeA")
}
if ipiv != nil && len(ipiv) < ind.N {
return errors.New("size ipiv")
}
info := -1
switch A.(type) {
case *matrix.FloatMatrix:
Aa := A.FloatArray()
info = dgetri(ind.N, Aa[ind.OffsetA:], ind.LDa, ipiv)
case *matrix.ComplexMatrix:
}
if info != 0 {
return errors.New("Getri call error")
}
return nil
}
示例2: checkSytrf
func checkSytrf(ind *linalg.IndexOpts, A matrix.Matrix, ipiv []int32) error {
if ind.N < 0 {
ind.N = A.Rows()
if ind.N != A.Cols() {
return errors.New("A not square")
}
}
if ind.N == 0 {
return nil
}
if ind.LDa == 0 {
ind.LDa = max(1, A.Rows())
}
if ind.LDa < max(1, ind.N) {
return errors.New("Sytrf: lda")
}
if ind.OffsetA < 0 {
return errors.New("Sytrf: offsetA")
}
sizeA := A.NumElements()
if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.N {
return errors.New("Sytrf: sizeA")
}
if ipiv != nil && len(ipiv) < ind.N {
return errors.New("Sytrf: size ipiv")
}
return nil
}
示例3: checkSyevd
func checkSyevd(ind *linalg.IndexOpts, A, W matrix.Matrix) error {
if ind.N < 0 {
ind.N = A.Rows()
if ind.N != A.Cols() {
return errors.New("Syevd: A not square")
}
}
if ind.N == 0 {
return nil
}
if ind.LDa == 0 {
ind.LDa = max(1, A.Rows())
}
if ind.LDa < max(1, ind.N) {
return errors.New("Syevd: lda")
}
if ind.OffsetA < 0 {
return errors.New("Syevd: offsetA")
}
sizeA := A.NumElements()
if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.N {
return errors.New("Syevd: sizeA")
}
if ind.OffsetW < 0 {
return errors.New("Syevd: offsetW")
}
sizeW := W.NumElements()
if sizeW < ind.OffsetW+ind.N {
return errors.New("Syevd: sizeW")
}
return nil
}
示例4: Potrs
/*
Solves a real symmetric or complex Hermitian positive definite set
of linear equations, given the Cholesky factorization computed by
potrf() or posv().
Potrs(A, B, uplo=PLower, n=A.Rows, nrhs=B.Cols,
ldA=max(1,A.Rows), ldB=max(1,B.Rows), offsetA=0, offsetB=0)
PURPOSE
Solves
A*X = B
where A is n by n, real symmetric or complex Hermitian and positive definite,
and B is n by nrhs. On entry, A contains the Cholesky factor, as
returned by Posv() or Potrf(). On exit B is replaced by the solution X.
ARGUMENTS
A float or complex matrix
B float or complex matrix. Must have the same type as A.
OPTIONS
uplo PLower or PUpper
n nonnegative integer. If negative, the default value is used.
nrhs nonnegative integer. If negative, the default value is used.
ldA positive integer. ldA >= max(1,n). If zero, the default
value is used.
ldB positive integer. ldB >= max(1,n). If zero, the default
value is used.
offsetA nonnegative integer
offsetB nonnegative integer;
*/
func Potrs(A, B matrix.Matrix, opts ...linalg.Option) error {
pars, err := linalg.GetParameters(opts...)
if err != nil {
return err
}
ind := linalg.GetIndexOpts(opts...)
if ind.N < 0 {
ind.N = A.Rows()
}
if ind.Nrhs < 0 {
ind.Nrhs = B.Cols()
}
if ind.N == 0 || ind.Nrhs == 0 {
return nil
}
if ind.LDa == 0 {
ind.LDa = max(1, A.Rows())
}
if ind.LDa < max(1, ind.N) {
return errors.New("lda")
}
if ind.LDb == 0 {
ind.LDb = max(1, B.Rows())
}
if ind.LDb < max(1, ind.N) {
return errors.New("ldb")
}
if ind.OffsetA < 0 {
return errors.New("offsetA")
}
if A.NumElements() < ind.OffsetA+(ind.N-1)*ind.LDa+ind.N {
return errors.New("sizeA")
}
if ind.OffsetB < 0 {
return errors.New("offsetB")
}
if B.NumElements() < ind.OffsetB+(ind.Nrhs-1)*ind.LDb+ind.N {
return errors.New("sizeB")
}
if !matrix.EqualTypes(A, B) {
return errors.New("types")
}
info := -1
switch A.(type) {
case *matrix.FloatMatrix:
Aa := A.FloatArray()
Ba := B.FloatArray()
uplo := linalg.ParamString(pars.Uplo)
info = dpotrs(uplo, ind.N, ind.Nrhs, Aa[ind.OffsetA:], ind.LDa,
Ba[ind.OffsetB:], ind.LDb)
case *matrix.ComplexMatrix:
return errors.New("ComplexMatrx: not implemented yet")
}
if info != 0 {
return errors.New("Potrs failed")
}
return nil
}
示例5: checkGbtrs
func checkGbtrs(ind *linalg.IndexOpts, A, B matrix.Matrix, ipiv []int32) error {
if ind.Kl < 0 {
return errors.New("Gbtrs: invalid kl")
}
if ind.N < 0 {
ind.N = A.Rows()
}
if ind.Nrhs < 0 {
ind.Nrhs = A.Cols()
}
if ind.N == 0 || ind.Nrhs == 0 {
return nil
}
if ind.Ku < 0 {
ind.Ku = A.Rows() - 2*ind.Kl - 1
}
if ind.Ku < 0 {
return errors.New("Gbtrs: invalid ku")
}
if ind.LDa == 0 {
ind.LDa = max(1, A.Rows())
}
if ind.LDa < 2*ind.Kl+ind.Ku+1 {
return errors.New("Gbtrs: lda")
}
if ind.OffsetA < 0 {
return errors.New("Gbtrs: offsetA")
}
sizeA := A.NumElements()
if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+2*ind.Kl+ind.Ku+1 {
return errors.New("Gbtrs: sizeA")
}
if ind.LDb == 0 {
ind.LDb = max(1, B.Rows())
}
if ind.OffsetB < 0 {
return errors.New("Gbtrs: offsetB")
}
sizeB := B.NumElements()
if sizeB < ind.OffsetB+(ind.Nrhs-1)*ind.LDb+ind.N {
return errors.New("Gbtrs: sizeB")
}
if ipiv != nil && len(ipiv) < ind.N {
return errors.New("Gbtrs: size ipiv")
}
return nil
}
示例6: Geqrf
/*
QR factorization.
Geqrf(A, tau, m=A.Rows, n=A.Cols, ldA=max(1,A.Rows), offsetA=0)
PURPOSE
QR factorization of an m by n real or complex matrix A:
A = Q*R = [Q1 Q2] * [R1; 0] if m >= n
A = Q*R = Q * [R1 R2] if m <= n,
where Q is m by m and orthogonal/unitary and R is m by n with R1
upper triangular. On exit, R is stored in the upper triangular
part of A. Q is stored as a product of k=min(m,n) elementary
reflectors. The parameters of the reflectors are stored in the
first k entries of tau and in the lower triangular part of the
first k columns of A.
ARGUMENTS
A float or complex matrix
tau float or complex matrix of length at least min(m,n). Must
have the same type as A.
m integer. If negative, the default value is used.
n integer. If negative, the default value is used.
ldA nonnegative integer. ldA >= max(1,m). If zero, the
default value is used.
offsetA nonnegative integer
*/
func Geqrf(A, tau matrix.Matrix, opts ...linalg.Option) error {
ind := linalg.GetIndexOpts(opts...)
if ind.N < 0 {
ind.N = A.Rows()
}
if ind.M < 0 {
ind.M = A.Cols()
}
if ind.N == 0 || ind.M == 0 {
return nil
}
if ind.LDa == 0 {
ind.LDa = max(1, A.Rows())
}
if ind.LDa < max(1, ind.M) {
return errors.New("lda")
}
if ind.OffsetA < 0 {
return errors.New("offsetA")
}
if A.NumElements() < ind.OffsetA+ind.K*ind.LDa {
return errors.New("sizeA")
}
if tau.NumElements() < min(ind.M, ind.N) {
return errors.New("sizeTau")
}
if !matrix.EqualTypes(A, tau) {
return errors.New("not same type")
}
info := -1
switch A.(type) {
case *matrix.FloatMatrix:
Aa := A.FloatArray()
taua := tau.FloatArray()
info = dgeqrf(ind.M, ind.N, Aa[ind.OffsetA:], ind.LDa, taua)
case *matrix.ComplexMatrix:
return errors.New("ComplexMatrx: not implemented yet")
}
if info != 0 {
return errors.New("Geqrf failed")
}
return nil
}
示例7: Gtrrf
/*
LU factorization of a real or complex tridiagonal matrix.
Gttrf(dl, d, du, du2, ipiv, n=len(d)-offsetd, offsetdl=0, offsetd=0, offsetdu=0)
PURPOSE
Factors an n by n real or complex tridiagonal matrix A as A = P*L*U.
A is specified by its lower diagonal dl, diagonal d, and upper
diagonal du. On exit dl, d, du, du2 and ipiv contain the details
of the factorization.
ARGUMENTS.
DL float or complex matrix
D float or complex matrix. Must have the same type as DL.
DU float or complex matrix. Must have the same type as DL.
DU2 float or complex matrix of length at least n-2. Must have the
same type as DL.
ipiv int vector of length at least n
OPTIONS
n nonnegative integer. If negative, the default value is used.
offsetdl nonnegative integer
offsetd nonnegative integer
offsetdu nonnegative integer
*/
func Gtrrf(DL, D, DU, DU2 matrix.Matrix, ipiv []int32, opts ...linalg.Option) error {
ind := linalg.GetIndexOpts(opts...)
if ind.OffsetD < 0 {
return errors.New("offset D")
}
if ind.N < 0 {
ind.N = D.NumElements() - ind.OffsetD
}
if ind.N < 0 {
return errors.New("size D")
}
if ind.N == 0 {
return nil
}
if ind.OffsetDL < 0 {
return errors.New("offset DL")
}
sizeDL := DL.NumElements()
if sizeDL < ind.OffsetDL+ind.N-1 {
return errors.New("sizeDL")
}
if ind.OffsetDU < 0 {
return errors.New("offset DU")
}
sizeDU := DU.NumElements()
if sizeDU < ind.OffsetDU+ind.N-1 {
return errors.New("sizeDU")
}
sizeDU2 := DU2.NumElements()
if sizeDU2 < ind.N-2 {
return errors.New("sizeDU2")
}
if len(ipiv) < ind.N {
return errors.New("size ipiv")
}
info := -1
switch DL.(type) {
case *matrix.FloatMatrix:
DLa := DL.FloatArray()
Da := D.FloatArray()
DUa := DU.FloatArray()
DU2a := DU2.FloatArray()
info = dgttrf(ind.N, DLa[ind.OffsetDL:], Da[ind.OffsetD:], DUa[ind.OffsetDU:],
DU2a, ipiv)
case *matrix.ComplexMatrix:
}
if info != 0 {
return errors.New("Gttrf call error")
}
return nil
}
示例8: checkPotri
func checkPotri(ind *linalg.IndexOpts, A matrix.Matrix) error {
if ind.N < 0 {
ind.N = A.Rows()
}
if ind.N == 0 {
return nil
}
if ind.LDa == 0 {
ind.LDa = max(1, A.Rows())
}
if ind.LDa < max(1, ind.N) {
return errors.New("Potri: lda")
}
if ind.OffsetA < 0 {
return errors.New("Potri: offsetA")
}
if A.NumElements() < ind.OffsetA+(ind.N-1)*ind.LDa+ind.N {
return errors.New("Potri: sizeA")
}
return nil
}
示例9: checkGbtrf
func checkGbtrf(ind *linalg.IndexOpts, A matrix.Matrix, ipiv []int32) error {
if ind.M < 0 {
return errors.New("Gbtrf: illegal m")
}
if ind.Kl < 0 {
return errors.New("GBtrf: illegal kl")
}
if ind.N < 0 {
ind.N = A.Rows()
}
if ind.M == 0 || ind.N == 0 {
return nil
}
if ind.Ku < 0 {
ind.Ku = A.Rows() - 2*ind.Kl - 1
}
if ind.Ku < 0 {
return errors.New("Gbtrf: invalid ku")
}
if ind.LDa == 0 {
ind.LDa = max(1, A.Rows())
}
if ind.LDa < 2*ind.Kl+ind.Ku+1 {
return errors.New("Gbtrf: lda")
}
if ind.OffsetA < 0 {
return errors.New("Gbtrf: offsetA")
}
sizeA := A.NumElements()
if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+2*ind.Kl+ind.Ku+1 {
return errors.New("Gbtrf: sizeA")
}
if ipiv != nil && len(ipiv) < min(ind.N, ind.M) {
return errors.New("Gbtrf: size ipiv")
}
return nil
}
示例10: Gbtrs
/*
Solves a real or complex set of linear equations with a banded
coefficient matrix, given the LU factorization computed by gbtrf()
or gbsv().
Gbtrs(A, B, ipiv, kl, trans=PNoTrans, n=A.Cols, ku=A.Rows-2*kl-1,
nrhs=B.Cols, ldA=max(1,A.Rows), ldB=max(1,B.Rows), offsetA=0, offsetB=0)
PURPOSE
Solves linear equations
A*X = B, if trans is PNoTrans
A^T*X = B, if trans is PTrans
A^H*X = B, if trans is PConjTrans
On entry, A and ipiv contain the LU factorization of an n by n
band matrix A as computed by Getrf() or Gbsv(). On exit B is
replaced by the solution X.
ARGUMENTS
A float or complex matrix
B float or complex matrix. Must have the same type as A.
ipiv int vector
kl nonnegative integer
OPTIONS
trans PNoTrans, PTrans or PConjTrans
n nonnegative integer. If negative, the default value is used.
ku nonnegative integer. If negative, the default value is used.
nrhs nonnegative integer. If negative, the default value is used.
ldA positive integer, ldA >= 2*kl+ku+1. If zero, the default value is used.
ldB positive integer, ldB >= max(1,n). If zero, the default value is used.
offsetA nonnegative integer
offsetB nonnegative integer;
*/
func Gbtrs(A, B matrix.Matrix, ipiv []int32, KL int, opts ...linalg.Option) error {
pars, err := linalg.GetParameters(opts...)
if err != nil {
return err
}
ind := linalg.GetIndexOpts(opts...)
//err = lapack_check(ind, fgbtrs, A, B, ipiv, pars)
ind.Kl = KL
if ind.Kl < 0 {
return errors.New("invalid kl")
}
if ind.N < 0 {
ind.N = A.Rows()
}
if ind.Nrhs < 0 {
ind.Nrhs = A.Cols()
}
if ind.N == 0 || ind.Nrhs == 0 {
return nil
}
if ind.Ku < 0 {
ind.Ku = A.Rows() - 2*ind.Kl - 1
}
if ind.Ku < 0 {
return errors.New("invalid ku")
}
if ind.LDa == 0 {
ind.LDa = max(1, A.Rows())
}
if ind.LDa < 2*ind.Kl+ind.Ku+1 {
return errors.New("lda")
}
if ind.OffsetA < 0 {
return errors.New("offsetA")
}
sizeA := A.NumElements()
if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+2*ind.Kl+ind.Ku+1 {
return errors.New("sizeA")
}
if ind.LDb == 0 {
ind.LDb = max(1, B.Rows())
}
if ind.OffsetB < 0 {
return errors.New("offsetB")
}
sizeB := B.NumElements()
if sizeB < ind.OffsetB+(ind.Nrhs-1)*ind.LDb+ind.N {
return errors.New("sizeB")
}
if ipiv != nil && len(ipiv) < ind.N {
return errors.New("size ipiv")
}
info := -1
switch A.(type) {
case *matrix.FloatMatrix:
Aa := A.FloatArray()
Ba := B.FloatArray()
trans := linalg.ParamString(pars.Trans)
info = dgbtrs(trans, ind.N, ind.Kl, ind.Ku, ind.Nrhs,
Aa[ind.OffsetA:], ind.LDa, ipiv, Ba[ind.OffsetB:], ind.LDb)
case *matrix.ComplexMatrix:
return errors.New("Gbtrs for complex not yet implemented")
}
if info != 0 {
//.........這裏部分代碼省略.........
示例11: Gtrrs
func Gtrrs(DL, D, DU, DU2, B matrix.Matrix, ipiv []int32, opts ...linalg.Option) error {
pars, err := linalg.GetParameters(opts...)
if err != nil {
return err
}
ind := linalg.GetIndexOpts(opts...)
if ind.OffsetD < 0 {
return errors.New("offset D")
}
if ind.N < 0 {
ind.N = D.NumElements() - ind.OffsetD
}
if ind.N < 0 {
return errors.New("size D")
}
if ind.N == 0 {
return nil
}
if ind.OffsetDL < 0 {
return errors.New("offset DL")
}
sizeDL := DL.NumElements()
if sizeDL < ind.OffsetDL+ind.N-1 {
return errors.New("sizeDL")
}
if ind.OffsetDU < 0 {
return errors.New("offset DU")
}
sizeDU := DU.NumElements()
if sizeDU < ind.OffsetDU+ind.N-1 {
return errors.New("sizeDU")
}
sizeDU2 := DU2.NumElements()
if sizeDU2 < ind.N-2 {
return errors.New("sizeDU2")
}
if ind.Nrhs < 0 {
ind.Nrhs = B.Cols()
}
if ind.Nrhs == 0 {
return nil
}
if ind.LDb == 0 {
ind.LDb = max(1, B.Rows())
}
if ind.LDb < max(1, ind.N) {
return errors.New("ldB")
}
if ind.OffsetB < 0 {
return errors.New("offset B")
}
sizeB := B.NumElements()
if sizeB < ind.OffsetB+(ind.Nrhs-1)*ind.LDb+ind.N {
return errors.New("sizeB")
}
if len(ipiv) < ind.N {
return errors.New("size ipiv")
}
DLa := DL.FloatArray()
Da := D.FloatArray()
DUa := DU.FloatArray()
DU2a := DU2.FloatArray()
Ba := B.FloatArray()
trans := linalg.ParamString(pars.Trans)
info := dgttrs(trans, ind.N, ind.Nrhs,
DLa[ind.OffsetDL:], Da[ind.OffsetD:], DUa[ind.OffsetDU:], DU2a,
ipiv, Ba[ind.OffsetB:], ind.LDb)
if info != 0 {
return errors.New("dgttrs call error")
}
return nil
}
示例12: Ormqf
/*
Product with a real orthogonal matrix.
Ormqr(A, tau, C, side='L', trans='N', m=C.Rows, n=C.Cols,
k=len(tau), ldA=max(1,A.Rows), ldC=max(1,C.Rows), offsetA=0, offsetC=0)
PURPOSE
Computes
C := Q*C if side = PLeft and trans = PNoTrans
C := Q^T*C if side = PLeft and trans = PTrans
C := C*Q if side = PRight and trans = PNoTrans
C := C*Q^T if side = PRight and trans = PTrans
C is m by n and Q is a square orthogonal matrix computed by geqrf.
Q is defined as a product of k elementary reflectors, stored as
the first k columns of A and the first k entries of tau.
ARGUMENTS
A float matrix
tau float matrix of length at least k
C float matrix
OPTIONS
side PLeft or PRight
trans PNoTrans or PTrans
m integer. If negative, the default value is used.
n integer. If negative, the default value is used.
k integer. k <= m if side = PRight and k <= n if side = PLeft.
If negative, the default value is used.
ldA nonnegative integer. ldA >= max(1,m) if side = PLeft
and ldA >= max(1,n) if side = PRight. If zero, the
default value is used.
ldC nonnegative integer. ldC >= max(1,m). If zero, the
default value is used.
offsetA nonnegative integer
offsetB nonnegative integer
*/
func Ormqf(A, tau, C matrix.Matrix, opts ...linalg.Option) error {
pars, err := linalg.GetParameters(opts...)
if err != nil {
return err
}
ind := linalg.GetIndexOpts(opts...)
if ind.N < 0 {
ind.N = C.Cols()
}
if ind.M < 0 {
ind.M = C.Rows()
}
if ind.K < 0 {
ind.K = tau.NumElements()
}
if ind.N == 0 || ind.M == 0 || ind.K == 0 {
return nil
}
if ind.LDa == 0 {
ind.LDa = max(1, A.Rows())
}
if ind.LDc == 0 {
ind.LDc = max(1, C.Rows())
}
switch pars.Side {
case linalg.PLeft:
if ind.K > ind.M {
errors.New("K")
}
if ind.LDa < max(1, ind.M) {
return errors.New("lda")
}
case linalg.PRight:
if ind.K > ind.N {
errors.New("K")
}
if ind.LDa < max(1, ind.N) {
return errors.New("lda")
}
}
if ind.OffsetA < 0 {
return errors.New("offsetA")
}
if A.NumElements() < ind.OffsetA+ind.K*ind.LDa {
return errors.New("sizeA")
}
if ind.OffsetC < 0 {
return errors.New("offsetC")
}
if C.NumElements() < ind.OffsetC+(ind.N-1)*ind.LDa+ind.M {
return errors.New("sizeC")
}
if tau.NumElements() < ind.K {
return errors.New("sizeTau")
}
if !matrix.EqualTypes(A, C, tau) {
return errors.New("not same type")
}
info := -1
side := linalg.ParamString(pars.Side)
//.........這裏部分代碼省略.........
示例13: check_level1_func
func check_level1_func(ind *linalg.IndexOpts, fn funcNum, X, Y matrix.Matrix) error {
nX, nY := 0, 0
// this is adapted from cvxopt:blas.c python blas interface
switch fn {
case fnrm2, fasum, fiamax, fscal, fset:
if ind.IncX <= 0 {
return errors.New("incX illegal, <=0")
}
if ind.OffsetX < 0 {
return errors.New("offsetX illegal, <0")
}
sizeX := X.NumElements()
if sizeX >= ind.OffsetX+1 {
// calculate default size for N based on X size
nX = 1 + (sizeX-ind.OffsetX-1)/ind.IncX
}
if sizeX < ind.OffsetX+1+(ind.Nx-1)*abs(ind.IncX) {
return errors.New("X size error")
}
if ind.Nx < 0 {
ind.Nx = nX
}
case fdot, fswap, fcopy, faxpy, faxpby:
// vector X
if ind.IncX <= 0 {
return errors.New("incX illegal, <=0")
}
if ind.OffsetX < 0 {
return errors.New("offsetX illegal, <0")
}
sizeX := X.NumElements()
if sizeX >= ind.OffsetX+1 {
// calculate default size for N based on X size
nX = 1 + (sizeX-ind.OffsetX-1)/ind.IncX
}
if sizeX < ind.OffsetX+1+(ind.Nx-1)*abs(ind.IncX) {
return errors.New("X size error")
}
if ind.Nx < 0 {
ind.Nx = nX
}
// vector Y
if ind.IncY <= 0 {
return errors.New("incY illegal, <=0")
}
if ind.OffsetY < 0 {
return errors.New("offsetY illegal, <0")
}
sizeY := Y.NumElements()
if sizeY >= ind.OffsetY+1 {
// calculate default size for N based on Y size
nY = 1 + (sizeY-ind.OffsetY-1)/ind.IncY
}
if ind.Ny < 0 {
ind.Ny = nY
}
if sizeY < ind.OffsetY+1+(ind.Ny-1)*abs(ind.IncY) {
fmt.Printf("sizeY=%d, inds: %#v\n", sizeY, ind)
return errors.New("Y size error")
}
case frotg, frotmg, frot, frotm:
}
return nil
}
示例14: check_level3_func
func check_level3_func(ind *linalg.IndexOpts, fn funcNum, A, B, C matrix.Matrix,
pars *linalg.Parameters) (err error) {
switch fn {
case fgemm:
if ind.M < 0 {
if pars.TransA == linalg.PNoTrans {
ind.M = A.Rows()
} else {
ind.M = A.Cols()
}
}
if ind.N < 0 {
if pars.TransB == linalg.PNoTrans {
ind.N = A.Cols()
} else {
ind.N = A.Rows()
}
}
if ind.K < 0 {
if pars.TransA == linalg.PNoTrans {
ind.K = A.Cols()
} else {
ind.K = A.Rows()
}
if pars.TransB == linalg.PNoTrans && ind.K != B.Rows() ||
pars.TransB != linalg.PNoTrans && ind.K != B.Cols() {
return errors.New("dimensions of A and B do not match")
}
}
if ind.OffsetB < 0 {
return errors.New("offsetB illegal, <0")
}
if ind.LDa == 0 {
ind.LDa = max(1, A.Rows())
}
if ind.K > 0 {
if (pars.TransA == linalg.PNoTrans && ind.LDa < max(1, ind.M)) ||
(pars.TransA != linalg.PNoTrans && ind.LDa < max(1, ind.K)) {
return errors.New("inconsistent ldA")
}
sizeA := A.NumElements()
if (pars.TransA == linalg.PNoTrans &&
sizeA < ind.OffsetA+(ind.K-1)*ind.LDa+ind.M) ||
(pars.TransA != linalg.PNoTrans &&
sizeA < ind.OffsetA+(ind.M-1)*ind.LDa+ind.K) {
return errors.New("sizeA")
}
}
// B matrix
if B != nil {
if ind.OffsetB < 0 {
return errors.New("offsetB illegal, <0")
}
if ind.LDb == 0 {
ind.LDb = max(1, B.Rows())
}
if ind.K > 0 {
if (pars.TransB == linalg.PNoTrans && ind.LDb < max(1, ind.K)) ||
(pars.TransB != linalg.PNoTrans && ind.LDb < max(1, ind.N)) {
return errors.New("inconsistent ldB")
}
sizeB := B.NumElements()
if (pars.TransB == linalg.PNoTrans &&
sizeB < ind.OffsetB+(ind.N-1)*ind.LDb+ind.K) ||
(pars.TransB != linalg.PNoTrans &&
sizeB < ind.OffsetB+(ind.K-1)*ind.LDb+ind.N) {
return errors.New("sizeB")
}
}
}
// C matrix
if C != nil {
if ind.OffsetC < 0 {
return errors.New("offsetC illegal, <0")
}
if ind.LDc == 0 {
ind.LDb = max(1, C.Rows())
}
if ind.LDc < max(1, ind.M) {
return errors.New("inconsistent ldC")
}
sizeC := C.NumElements()
if sizeC < ind.OffsetC+(ind.N-1)*ind.LDc+ind.M {
return errors.New("sizeC")
}
}
case fsymm, ftrmm, ftrsm:
if ind.M < 0 {
ind.M = B.Rows()
if pars.Side == linalg.PLeft && (ind.M != A.Rows() || ind.M != A.Cols()) {
return errors.New("dimensions of A and B do not match")
}
}
if ind.N < 0 {
ind.N = B.Cols()
if pars.Side == linalg.PRight && (ind.N != A.Rows() || ind.N != A.Cols()) {
return errors.New("dimensions of A and B do not match")
}
//.........這裏部分代碼省略.........
示例15: check_level2_func
func check_level2_func(ind *linalg.IndexOpts, fn funcNum, X, Y, A matrix.Matrix, pars *linalg.Parameters) error {
if ind.IncX <= 0 {
return errors.New("incX")
}
if ind.IncY <= 0 {
return errors.New("incY")
}
sizeA := A.NumElements()
switch fn {
case fgemv: // general matrix
if ind.M < 0 {
ind.M = A.Rows()
}
if ind.N < 0 {
ind.N = A.Cols()
}
if ind.LDa == 0 {
ind.LDa = max(1, A.Rows())
}
if ind.OffsetA < 0 {
return errors.New("offsetA")
}
if ind.N > 0 && ind.M > 0 &&
sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.M {
return errors.New("sizeA")
}
if ind.OffsetX < 0 {
return errors.New("offsetX")
}
if ind.OffsetY < 0 {
return errors.New("offsetY")
}
sizeX := X.NumElements()
sizeY := Y.NumElements()
if pars.Trans == linalg.PNoTrans {
if ind.N > 0 && sizeX < ind.OffsetX+(ind.N-1)*abs(ind.IncX)+1 {
return errors.New("sizeX")
}
if ind.M > 0 && sizeY < ind.OffsetY+(ind.M-1)*abs(ind.IncY)+1 {
return errors.New("sizeY")
}
} else {
if ind.M > 0 && sizeX < ind.OffsetX+(ind.M-1)*abs(ind.IncX)+1 {
return errors.New("sizeX")
}
if ind.N > 0 && sizeY < ind.OffsetY+(ind.N-1)*abs(ind.IncY)+1 {
return errors.New("sizeY")
}
}
case fger:
if ind.M < 0 {
ind.M = A.Rows()
}
if ind.N < 0 {
ind.N = A.Cols()
}
if ind.M == 0 || ind.N == 0 {
return nil
}
if ind.M > 0 && ind.N > 0 {
if ind.LDa == 0 {
ind.LDa = max(1, A.Rows())
}
if ind.LDa < max(1, ind.M) {
return errors.New("ldA")
}
if ind.OffsetA < 0 {
return errors.New("offsetA")
}
if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.M {
return errors.New("sizeA")
}
if ind.OffsetX < 0 {
return errors.New("offsetX")
}
if ind.OffsetY < 0 {
return errors.New("offsetY")
}
sizeX := X.NumElements()
if sizeX < ind.OffsetX+(ind.M-1)*abs(ind.IncX)+1 {
return errors.New("sizeX")
}
sizeY := Y.NumElements()
if sizeY < ind.OffsetY+(ind.N-1)*abs(ind.IncY)+1 {
return errors.New("sizeY")
}
}
case fgbmv: // general banded
if ind.M < 0 {
ind.M = A.Rows()
}
if ind.N < 0 {
ind.N = A.Cols()
}
if ind.Kl < 0 {
return errors.New("kl")
}
if ind.Ku < 0 {
ind.Ku = A.Rows() - 1 - ind.Kl
//.........這裏部分代碼省略.........