本文整理匯總了Golang中github.com/hrautila/go/opt/matrix.Matrix.FloatArray方法的典型用法代碼示例。如果您正苦於以下問題:Golang Matrix.FloatArray方法的具體用法?Golang Matrix.FloatArray怎麽用?Golang Matrix.FloatArray使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類github.com/hrautila/go/opt/matrix.Matrix
的用法示例。
在下文中一共展示了Matrix.FloatArray方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: Dot
// Returns Y = X^H*Y for real or complex X, Y.
//
// ARGUMENTS
// X float or complex matrix
// Y float or complex matrix. Must have the same type as X.
//
// OPTIONS
// n integer. If n<0, the default value of n is used.
// The default value is equal to nx = 1+(len(x)-offsetx-1)/incx or 0 if
// len(x) > offsetx+1. If the default value is used, it must be equal to
// ny = 1+(len(y)-offsetx-1)/|incy| or 0 if len(y) > offsety+1
// incx nonzero integer [default=1]
// incy nonzero integer [default=1]
// offsetx nonnegative integer [default=0]
// offsety nonnegative integer [default=0]
//
func Dot(X, Y matrix.Matrix, opts ...linalg.Option) (v matrix.Scalar) {
v = matrix.FScalar(math.NaN())
//cv = cmplx.NaN()
ind := linalg.GetIndexOpts(opts...)
err := check_level1_func(ind, fdot, X, Y)
if err != nil {
return
}
if ind.Nx == 0 {
return matrix.FScalar(0.0)
}
sameType := matrix.EqualTypes(X, Y)
if ! sameType {
err = errors.New("arrays not of same type")
return
}
switch X.(type) {
case *matrix.ComplexMatrix:
Xa := X.ComplexArray()
Ya := Y.ComplexArray()
v = matrix.CScalar(zdotc(ind.Nx, Xa[ind.OffsetX:], ind.IncX, Ya[ind.OffsetY:], ind.IncY))
case *matrix.FloatMatrix:
Xa := X.FloatArray()
Ya := Y.FloatArray()
v = matrix.FScalar(ddot(ind.Nx, Xa[ind.OffsetX:], ind.IncX, Ya[ind.OffsetY:], ind.IncY))
//default:
// err = errors.New("not implemented for parameter types", )
}
return
}
示例2: Copy
// Copies a vector X to a vector Y (Y := X).
//
// ARGUMENTS
// X float or complex matrix
// Y float or complex matrix. Must have the same type as X.
//
// OPTIONS
// n integer. If n<0, the default value of n is used.
// The default value is given by 1+(len(x)-offsetx-1)/incx or 0
// if len(x) > offsetx+1
// incx nonzero integer
// incy nonzero integer
// offsetx nonnegative integer
// offsety nonnegative integer;
//
func Copy(X, Y matrix.Matrix, opts ...linalg.Option) (err error) {
ind := linalg.GetIndexOpts(opts...)
err = check_level1_func(ind, fcopy, X, Y)
if err != nil {
return
}
if ind.Nx == 0 {
return
}
sameType := matrix.EqualTypes(X, Y)
if ! sameType {
err = errors.New("arrays not same type")
return
}
switch X.(type) {
case *matrix.ComplexMatrix:
Xa := X.ComplexArray()
Ya := Y.ComplexArray()
zcopy(ind.Nx, Xa[ind.OffsetX:], ind.IncX, Ya[ind.OffsetY:], ind.IncY)
case *matrix.FloatMatrix:
Xa := X.FloatArray()
Ya := Y.FloatArray()
dcopy(ind.Nx, Xa[ind.OffsetX:], ind.IncX, Ya[ind.OffsetY:], ind.IncY)
default:
err = errors.New("not implemented for parameter types", )
}
return
}
示例3: Syr2
/*
Symmetric rank-2 update.
syr2(x, y, A, uplo='L', alpha=1.0, n=A.size[0], incx=1, incy=1,
ldA=max(1,A.size[0]), offsetx=0, offsety=0, offsetA=0)
PURPOSE
Computes A := A + alpha*(x*y^T + y*x^T) with A real symmetric matrix of order n.
ARGUMENTS
x float matrix
y float matrix
A float matrix
alpha real number (int or float)
OPTIONS
uplo 'L' or 'U'
n integer. If negative, the default value is used.
incx nonzero integer
incy nonzero integer
ldA nonnegative integer. ldA >= max(1,n).
If zero the default value is used.
offsetx nonnegative integer
offsety nonnegative integer
offsetA nonnegative integer;
*/
func Syr2(X, Y, A matrix.Matrix, alpha matrix.Scalar, opts ...linalg.Option) (err error) {
var params *linalg.Parameters
params, err = linalg.GetParameters(opts...)
if err != nil {
return
}
ind := linalg.GetIndexOpts(opts...)
err = check_level2_func(ind, fsyr2, X, Y, A, params)
if err != nil {
return
}
if !matrix.EqualTypes(A, X, Y) {
return errors.New("Parameters not of same type")
}
switch X.(type) {
case *matrix.FloatMatrix:
Xa := X.FloatArray()
Ya := X.FloatArray()
Aa := A.FloatArray()
aval := alpha.Float()
if math.IsNaN(aval) {
return errors.New("alpha not a number")
}
uplo := linalg.ParamString(params.Uplo)
dsyr2(uplo, ind.N, aval, Xa[ind.OffsetX:], ind.IncX,
Ya[ind.OffsetY:], ind.IncY,
Aa[ind.OffsetA:], ind.LDa)
case *matrix.ComplexMatrix:
return errors.New("Not implemented yet for complx.Matrix")
default:
return errors.New("Unknown type, not implemented")
}
return
}
示例4: Getri
/*
Inverse of a real or complex matrix.
Getri(A, ipiv, n=A.Rows, ldA = max(1,A.Rows), offsetA=0)
PURPOSE
Computes the inverse of real or complex matrix of order n. On
entry, A and ipiv contain the LU factorization, as returned by
gesv() or getrf(). On exit A is replaced by the inverse.
ARGUMENTS
A float or complex matrix
ipiv int vector
OPTIONS
n nonnegative integer. If negative, the default value is used.
ldA positive integer. ldA >= max(1,n). If zero, the default
value is used.
offsetA nonnegative integer;
*/
func Getri(A matrix.Matrix, ipiv []int32, opts ...linalg.Option) error {
ind := linalg.GetIndexOpts(opts...)
if ind.N < 0 {
ind.N = A.Cols()
}
if ind.N == 0 {
return nil
}
if ind.LDa == 0 {
ind.LDa = max(1, A.Rows())
}
if ind.OffsetA < 0 {
return errors.New("lda")
}
sizeA := A.NumElements()
if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.N {
return errors.New("sizeA")
}
if ipiv != nil && len(ipiv) < ind.N {
return errors.New("size ipiv")
}
info := -1
switch A.(type) {
case *matrix.FloatMatrix:
Aa := A.FloatArray()
info = dgetri(ind.N, Aa[ind.OffsetA:], ind.LDa, ipiv)
case *matrix.ComplexMatrix:
}
if info != 0 {
return errors.New("Getri call error")
}
return nil
}
示例5: Tbsv
/*
Solution of a triangular and banded set of equations.
Tbsv(A, X, uplo=PLower, trans=PNoTrans, diag=PNonDiag, n=A.Cols,
k=max(0,A.Rows-1), ldA=A.size[0], incx=1, offsetA=0, offsetx=0)
PURPOSE
X := A^{-1}*X, if trans is PNoTrans
X := A^{-T}*X, if trans is PTrans
X := A^{-H}*X, if trans is PConjTrans
A is banded triangular of order n and with bandwidth k.
ARGUMENTS
A float or complex m*k matrix.
X float or complex k*1 matrix. Must have the same type as A.
OPTIONS
uplo PLower or PUpper
trans PNoTrans, PTrans or PConjTrans
diag PNoNUnit or PUnit
n nonnegative integer. If negative, the default value is used.
k nonnegative integer. If negative, the default value is used.
ldA nonnegative integer. ldA >= 1+k.
If zero the default value is used.
incx nonzero integer
offsetA nonnegative integer
offsetx nonnegative integer;
*/
func Tbsv(A, X matrix.Matrix, opts ...linalg.Option) (err error) {
var params *linalg.Parameters
if !matrix.EqualTypes(A, X) {
err = errors.New("Parameters not of same type")
return
}
params, err = linalg.GetParameters(opts...)
if err != nil {
return
}
ind := linalg.GetIndexOpts(opts...)
err = check_level2_func(ind, ftbsv, X, nil, A, params)
if err != nil {
return
}
if ind.N == 0 {
return
}
switch X.(type) {
case *matrix.FloatMatrix:
Xa := X.FloatArray()
Aa := A.FloatArray()
uplo := linalg.ParamString(params.Uplo)
trans := linalg.ParamString(params.Trans)
diag := linalg.ParamString(params.Diag)
dtbsv(uplo, trans, diag, ind.N, ind.K,
Aa[ind.OffsetA:], ind.LDa, Xa[ind.OffsetX:], ind.IncX)
case *matrix.ComplexMatrix:
return errors.New("Not implemented yet for complx.Matrix")
default:
return errors.New("Unknown type, not implemented")
}
return
}
示例6: Scal
// Scales a vector by a constant (X := alpha*X).
//
// ARGUMENTS
// X float or complex matrix
// alpha number (float or complex singleton matrix). Complex alpha is only
// allowed if X is complex.
//
// OPTIONS
// n integer. If n<0, the default value of n is used.
// The default value is equal to 1+(len(x)-offset-1)/inc or 0
// if len(x) > offset+1.
// inc positive integer, default = 1
// offset nonnegative integer, default = 0
//
func Scal(X matrix.Matrix, alpha matrix.Scalar, opts ...linalg.Option) (err error) {
ind := linalg.GetIndexOpts(opts...)
err = check_level1_func(ind, fscal, X, nil)
if err != nil {
return
}
if ind.Nx == 0 {
return
}
switch X.(type) {
case *matrix.ComplexMatrix:
Xa := X.ComplexArray()
cval := alpha.Complex()
zscal(ind.Nx, cval, Xa[ind.OffsetX:], ind.IncX)
case *matrix.FloatMatrix:
Xa := X.FloatArray()
rval := alpha.Float()
if math.IsNaN(rval) {
return errors.New("alpha not float value")
}
dscal(ind.Nx, rval, Xa[ind.OffsetX:], ind.IncX)
default:
err = errors.New("not implemented for parameter types", )
}
return
}
示例7: Potrs
/*
Solves a real symmetric or complex Hermitian positive definite set
of linear equations, given the Cholesky factorization computed by
potrf() or posv().
Potrs(A, B, uplo=PLower, n=A.Rows, nrhs=B.Cols,
ldA=max(1,A.Rows), ldB=max(1,B.Rows), offsetA=0, offsetB=0)
PURPOSE
Solves
A*X = B
where A is n by n, real symmetric or complex Hermitian and positive definite,
and B is n by nrhs. On entry, A contains the Cholesky factor, as
returned by Posv() or Potrf(). On exit B is replaced by the solution X.
ARGUMENTS
A float or complex matrix
B float or complex matrix. Must have the same type as A.
OPTIONS
uplo PLower or PUpper
n nonnegative integer. If negative, the default value is used.
nrhs nonnegative integer. If negative, the default value is used.
ldA positive integer. ldA >= max(1,n). If zero, the default
value is used.
ldB positive integer. ldB >= max(1,n). If zero, the default
value is used.
offsetA nonnegative integer
offsetB nonnegative integer;
*/
func Potrs(A, B matrix.Matrix, opts ...linalg.Option) error {
pars, err := linalg.GetParameters(opts...)
if err != nil {
return err
}
ind := linalg.GetIndexOpts(opts...)
if ind.N < 0 {
ind.N = A.Rows()
}
if ind.Nrhs < 0 {
ind.Nrhs = B.Cols()
}
if ind.N == 0 || ind.Nrhs == 0 {
return nil
}
if ind.LDa == 0 {
ind.LDa = max(1, A.Rows())
}
if ind.LDa < max(1, ind.N) {
return errors.New("lda")
}
if ind.LDb == 0 {
ind.LDb = max(1, B.Rows())
}
if ind.LDb < max(1, ind.N) {
return errors.New("ldb")
}
if ind.OffsetA < 0 {
return errors.New("offsetA")
}
if A.NumElements() < ind.OffsetA+(ind.N-1)*ind.LDa+ind.N {
return errors.New("sizeA")
}
if ind.OffsetB < 0 {
return errors.New("offsetB")
}
if B.NumElements() < ind.OffsetB+(ind.Nrhs-1)*ind.LDb+ind.N {
return errors.New("sizeB")
}
if !matrix.EqualTypes(A, B) {
return errors.New("types")
}
info := -1
switch A.(type) {
case *matrix.FloatMatrix:
Aa := A.FloatArray()
Ba := B.FloatArray()
uplo := linalg.ParamString(pars.Uplo)
info = dpotrs(uplo, ind.N, ind.Nrhs, Aa[ind.OffsetA:], ind.LDa,
Ba[ind.OffsetB:], ind.LDb)
case *matrix.ComplexMatrix:
return errors.New("ComplexMatrx: not implemented yet")
}
if info != 0 {
return errors.New("Potrs failed")
}
return nil
}
示例8: Herk
/*
Rank-k update of symmetric matrix. (L3)
Herk(A, C, alpha, beta, uplo=PLower, trans=PNoTrans, n=-1,
k=-1, ldA=max(1,A.Rows), ldC=max(1,C.Rows), offsetA=0, offsetB=0)
Computes
C := alpha*A*A^T + beta*C, if trans is PNoTrans
C := alpha*A^T*A + beta*C, if trans is PTrans
C is symmetric (real or complex) of order n. The inner dimension of the matrix
product is k. If k=0 this is interpreted as C := beta*C.
ARGUMENTS
A float or complex matrix.
C float or complex matrix. Must have the same type as A.
alpha number (float or complex singleton matrix). Complex alpha is only
allowed if A is complex.
beta number (float or complex singleton matrix). Complex beta is only
allowed if A is complex.
OPTIONS
uplo PLower or PUpper
trans PNoTrans or PTrans
n integer. If negative, the default value is used.
The default value is n = A.Rows or if trans == PNoTrans n = A.Cols.
k integer. If negative, the default value is used.
The default value is k = A.Cols, or if trans == PNoTrans k = A.Rows.
ldA nonnegative integer.
ldA >= max(1,n) or if trans != PNoTrans ldA >= max(1,k).
If zero, the default value is used.
ldC nonnegative integer. ldC >= max(1,n).
If zero, the default value is used.
offsetA nonnegative integer
offsetC nonnegative integer;
*/
func Herk(A, C matrix.Matrix, alpha, beta matrix.Scalar, opts ...linalg.Option) (err error) {
params, e := linalg.GetParameters(opts...)
if e != nil {
err = e
return
}
ind := linalg.GetIndexOpts(opts...)
err = check_level3_func(ind, fsyrk, A, nil, C, params)
if e != nil || err != nil {
return
}
if !matrix.EqualTypes(A, C) {
return errors.New("Parameters not of same type")
}
switch A.(type) {
case *matrix.FloatMatrix:
Aa := A.FloatArray()
Ca := C.FloatArray()
aval := alpha.Float()
bval := beta.Float()
if math.IsNaN(aval) || math.IsNaN(bval) {
return errors.New("alpha or beta not a number")
}
uplo := linalg.ParamString(params.Uplo)
trans := linalg.ParamString(params.Trans)
dsyrk(uplo, trans, ind.N, ind.K, aval, Aa[ind.OffsetA:], ind.LDa, bval,
Ca[ind.OffsetC:], ind.LDc)
case *matrix.ComplexMatrix:
Aa := A.ComplexArray()
Ca := C.ComplexArray()
aval := alpha.Complex()
if cmplx.IsNaN(aval) {
return errors.New("alpha not a real or complex number")
}
bval := beta.Float()
if math.IsNaN(bval) {
return errors.New("beta not a real number")
}
uplo := linalg.ParamString(params.Uplo)
trans := linalg.ParamString(params.Trans)
zherk(uplo, trans, ind.N, ind.K, aval, Aa[ind.OffsetA:], ind.LDa, bval,
Ca[ind.OffsetC:], ind.LDc)
default:
return errors.New("Unknown type, not implemented")
}
return
}
示例9: Trsm
/*
Solution of a triangular system of equations with multiple righthand sides. (L3)
Trsm(A, B, alpha, side=PLeft, uplo=PLower, transA=PNoTrans, diag=PNonUnit,
m=-1, n=-1, ldA=max(1,A.Rows), ldB=max(1,B.Rows), offsetA=0, offsetB=0)
Computes
B := alpha*A^{-1}*B if transA is PNoTrans and side = PLeft
B := alpha*B*A^{-1} if transA is PNoTrans and side = PRight
B := alpha*A^{-T}*B if transA is PTrans and side = PLeft
B := alpha*B*A^{-T} if transA is PTrans and side = PRight
B := alpha*A^{-H}*B if transA is PConjTrans and side = PLeft
B := alpha*B*A^{-H} if transA is PConjTrans and side = PRight
B is m by n and A is triangular. The code does not verify whether A is nonsingular.
ARGUMENTS
A float or complex matrix.
B float or complex matrix. Must have the same type as A.
alpha number (float or complex). Complex alpha is only
allowed if A is complex.
OPTIONS
side PLeft or PRight
uplo PLower or PUpper
transA PNoTrans or PTrans
diag PNonUnit or PUnit
m integer. If negative, the default value is used.
The default value is m = A.Rows or if side == PRight m = B.Rows
If the default value is used and side is PLeft, m must be equal to A.Cols.
n integer. If negative, the default value is used.
The default value is n = B.Cols or if side )= PRight n = A.Rows.
If the default value is used and side is PRight, n must be equal to A.Cols.
ldA nonnegative integer.
ldA >= max(1,m) of if side == PRight lda >= max(1,n).
If zero, the default value is used.
ldB nonnegative integer. ldB >= max(1,m).
If zero, the default value is used.
offsetA nonnegative integer
offsetB nonnegative integer
*/
func Trsm(A, B matrix.Matrix, alpha matrix.Scalar, opts ...linalg.Option) (err error) {
params, e := linalg.GetParameters(opts...)
if e != nil {
err = e
return
}
ind := linalg.GetIndexOpts(opts...)
err = check_level3_func(ind, ftrsm, A, B, nil, params)
if err != nil {
return
}
if !matrix.EqualTypes(A, B) {
return errors.New("Parameters not of same type")
}
switch A.(type) {
case *matrix.FloatMatrix:
Aa := A.FloatArray()
Ba := B.FloatArray()
aval := alpha.Float()
if math.IsNaN(aval) {
return errors.New("alpha or beta not a number")
}
uplo := linalg.ParamString(params.Uplo)
transA := linalg.ParamString(params.TransA)
side := linalg.ParamString(params.Side)
diag := linalg.ParamString(params.Diag)
dtrsm(side, uplo, transA, diag, ind.M, ind.N, aval,
Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb)
case *matrix.ComplexMatrix:
Aa := A.ComplexArray()
Ba := B.ComplexArray()
aval := alpha.Complex()
if cmplx.IsNaN(aval) {
return errors.New("alpha not a number")
}
uplo := linalg.ParamString(params.Uplo)
transA := linalg.ParamString(params.TransA)
side := linalg.ParamString(params.Side)
diag := linalg.ParamString(params.Diag)
ztrsm(side, uplo, transA, diag, ind.M, ind.N, aval,
Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb)
default:
return errors.New("Unknown type, not implemented")
}
return
}
示例10: Geqrf
/*
QR factorization.
Geqrf(A, tau, m=A.Rows, n=A.Cols, ldA=max(1,A.Rows), offsetA=0)
PURPOSE
QR factorization of an m by n real or complex matrix A:
A = Q*R = [Q1 Q2] * [R1; 0] if m >= n
A = Q*R = Q * [R1 R2] if m <= n,
where Q is m by m and orthogonal/unitary and R is m by n with R1
upper triangular. On exit, R is stored in the upper triangular
part of A. Q is stored as a product of k=min(m,n) elementary
reflectors. The parameters of the reflectors are stored in the
first k entries of tau and in the lower triangular part of the
first k columns of A.
ARGUMENTS
A float or complex matrix
tau float or complex matrix of length at least min(m,n). Must
have the same type as A.
m integer. If negative, the default value is used.
n integer. If negative, the default value is used.
ldA nonnegative integer. ldA >= max(1,m). If zero, the
default value is used.
offsetA nonnegative integer
*/
func Geqrf(A, tau matrix.Matrix, opts ...linalg.Option) error {
ind := linalg.GetIndexOpts(opts...)
if ind.N < 0 {
ind.N = A.Rows()
}
if ind.M < 0 {
ind.M = A.Cols()
}
if ind.N == 0 || ind.M == 0 {
return nil
}
if ind.LDa == 0 {
ind.LDa = max(1, A.Rows())
}
if ind.LDa < max(1, ind.M) {
return errors.New("lda")
}
if ind.OffsetA < 0 {
return errors.New("offsetA")
}
if A.NumElements() < ind.OffsetA+ind.K*ind.LDa {
return errors.New("sizeA")
}
if tau.NumElements() < min(ind.M, ind.N) {
return errors.New("sizeTau")
}
if !matrix.EqualTypes(A, tau) {
return errors.New("not same type")
}
info := -1
switch A.(type) {
case *matrix.FloatMatrix:
Aa := A.FloatArray()
taua := tau.FloatArray()
info = dgeqrf(ind.M, ind.N, Aa[ind.OffsetA:], ind.LDa, taua)
case *matrix.ComplexMatrix:
return errors.New("ComplexMatrx: not implemented yet")
}
if info != 0 {
return errors.New("Geqrf failed")
}
return nil
}
示例11: Gtrrf
/*
LU factorization of a real or complex tridiagonal matrix.
Gttrf(dl, d, du, du2, ipiv, n=len(d)-offsetd, offsetdl=0, offsetd=0, offsetdu=0)
PURPOSE
Factors an n by n real or complex tridiagonal matrix A as A = P*L*U.
A is specified by its lower diagonal dl, diagonal d, and upper
diagonal du. On exit dl, d, du, du2 and ipiv contain the details
of the factorization.
ARGUMENTS.
DL float or complex matrix
D float or complex matrix. Must have the same type as DL.
DU float or complex matrix. Must have the same type as DL.
DU2 float or complex matrix of length at least n-2. Must have the
same type as DL.
ipiv int vector of length at least n
OPTIONS
n nonnegative integer. If negative, the default value is used.
offsetdl nonnegative integer
offsetd nonnegative integer
offsetdu nonnegative integer
*/
func Gtrrf(DL, D, DU, DU2 matrix.Matrix, ipiv []int32, opts ...linalg.Option) error {
ind := linalg.GetIndexOpts(opts...)
if ind.OffsetD < 0 {
return errors.New("offset D")
}
if ind.N < 0 {
ind.N = D.NumElements() - ind.OffsetD
}
if ind.N < 0 {
return errors.New("size D")
}
if ind.N == 0 {
return nil
}
if ind.OffsetDL < 0 {
return errors.New("offset DL")
}
sizeDL := DL.NumElements()
if sizeDL < ind.OffsetDL+ind.N-1 {
return errors.New("sizeDL")
}
if ind.OffsetDU < 0 {
return errors.New("offset DU")
}
sizeDU := DU.NumElements()
if sizeDU < ind.OffsetDU+ind.N-1 {
return errors.New("sizeDU")
}
sizeDU2 := DU2.NumElements()
if sizeDU2 < ind.N-2 {
return errors.New("sizeDU2")
}
if len(ipiv) < ind.N {
return errors.New("size ipiv")
}
info := -1
switch DL.(type) {
case *matrix.FloatMatrix:
DLa := DL.FloatArray()
Da := D.FloatArray()
DUa := DU.FloatArray()
DU2a := DU2.FloatArray()
info = dgttrf(ind.N, DLa[ind.OffsetDL:], Da[ind.OffsetD:], DUa[ind.OffsetDU:],
DU2a, ipiv)
case *matrix.ComplexMatrix:
}
if info != 0 {
return errors.New("Gttrf call error")
}
return nil
}
示例12: Asum
// Returns ||Re x||_1 + ||Im x||_1.
//
// ARGUMENTS
// X float or complex matrix
//
// OPTIONS
// n integer. If n<0, the default value of n is used.
// The default value is equal to n = 1+(len(x)-offset-1)/inc or 0 if
// len(x) > offset+1
// inc positive integer
// offset nonnegative integer
//
func Asum(X matrix.Matrix, opts ...linalg.Option) (v matrix.Scalar) {
v = matrix.FScalar(math.NaN())
ind := linalg.GetIndexOpts(opts...)
err := check_level1_func(ind, fasum, X, nil)
if err != nil {
return
}
if ind.Nx == 0 {
return
}
switch X.(type) {
case *matrix.ComplexMatrix:
Xa := X.ComplexArray()
v = matrix.FScalar(dzasum(ind.Nx, Xa[ind.OffsetX:], ind.IncX))
case *matrix.FloatMatrix:
Xa := X.FloatArray()
v = matrix.FScalar(dasum(ind.Nx, Xa[ind.OffsetX:], ind.IncX))
//default:
// err = errors.New("not implemented for parameter types", )
}
return
}
示例13: Axpy
// Constant times a vector plus a vector (Y := alpha*X+Y).
//
// ARGUMENTS
// X float or complex matrix
// Y float or complex matrix. Must have the same type as X.
// alpha number (float or complex singleton matrix). Complex alpha is only
// allowed if x is complex.
//
// OPTIONS
// n integer. If n<0, the default value of n is used.
// The default value is equal to 1+(len(x)-offsetx-1)/incx
// or 0 if len(x) >= offsetx+1
// incx nonzero integer
// incy nonzero integer
// offsetx nonnegative integer
// offsety nonnegative integer;
//
func Axpy(X, Y matrix.Matrix, alpha matrix.Scalar, opts ...linalg.Option) (err error) {
ind := linalg.GetIndexOpts(opts...)
err = check_level1_func(ind, faxpy, X, Y)
if err != nil {
return
}
if ind.Nx == 0 {
return
}
sameType := matrix.EqualTypes(X, Y)
if ! sameType {
err = errors.New("arrays not same type")
return
}
switch X.(type) {
case *matrix.ComplexMatrix:
Xa := X.ComplexArray()
Ya := Y.ComplexArray()
aval := alpha.Complex()
if cmplx.IsNaN(aval) {
return errors.New("alpha not complex value")
}
zaxpy(ind.Nx, aval, Xa[ind.OffsetX:],
ind.IncX, Ya[ind.OffsetY:], ind.IncY)
case *matrix.FloatMatrix:
Xa := X.FloatArray()
Ya := Y.FloatArray()
aval := alpha.Float()
if math.IsNaN(aval) {
return errors.New("alpha not float value")
}
daxpy(ind.Nx, aval, Xa[ind.OffsetX:],
ind.IncX, Ya[ind.OffsetY:], ind.IncY)
default:
err = errors.New("not implemented for parameter types", )
}
return
}
示例14: Gemm
/*
General matrix-matrix product. (L3)
PURPOSE
Computes
C := alpha*A*B + beta*C if transA = PNoTrans and transB = PNoTrans.
C := alpha*A^T*B + beta*C if transA = PTrans and transB = PNoTrans.
C := alpha*A^H*B + beta*C if transA = PConjTrans and transB = PNoTrans.
C := alpha*A*B^T + beta*C if transA = PNoTrans and transB = PTrans.
C := alpha*A^T*B^T + beta*C if transA = PTrans and transB = PTrans.
C := alpha*A^H*B^T + beta*C if transA = PConjTrans and transB = PTrans.
C := alpha*A*B^H + beta*C if transA = PNoTrans and transB = PConjTrans.
C := alpha*A^T*B^H + beta*C if transA = PTrans and transB = PConjTrans.
C := alpha*A^H*B^H + beta*C if transA = PConjTrans and transB = PConjTrans.
The number of rows of the matrix product is m. The number of columns is n.
The inner dimension is k. If k=0, this reduces to C := beta*C.
ARGUMENTS
A float or complex matrix, m*k
B float or complex matrix, k*n
C float or complex matrix, m*n
alpha number (float or complex singleton matrix)
beta number (float or complex singleton matrix)
OPTIONS
transA PNoTrans, PTrans or PConjTrans
transB PNoTrans, PTrans or PConjTrans
m integer. If negative, the default value is used. The default value is
m = A.Rows of if transA != PNoTrans m = A.Cols.
n integer. If negative, the default value is used. The default value is
n = (transB == PNoTrans) ? B.Cols : B.Rows.
k integer. If negative, the default value is used. The default value is
k=A.Cols or if transA != PNoTrans) k = A.Rows, transA=PNoTrans.
If the default value is used it should also be equal to
(transB == PNoTrans) ? B.Rows : B.Cols.
ldA nonnegative integer. ldA >= max(1,m) of if transA != NoTrans max(1,k).
If zero, the default value is used.
ldB nonnegative integer. ldB >= max(1,k) or if transB != NoTrans max(1,n).
If zero, the default value is used.
ldC nonnegative integer. ldC >= max(1,m).
If zero, the default value is used.
offsetA nonnegative integer
offsetB nonnegative integer
offsetC nonnegative integer;
*/
func Gemm(A, B, C matrix.Matrix, alpha, beta matrix.Scalar, opts ...linalg.Option) (err error) {
params, e := linalg.GetParameters(opts...)
if e != nil {
err = e
return
}
ind := linalg.GetIndexOpts(opts...)
err = check_level3_func(ind, fgemm, A, B, C, params)
if err != nil {
return
}
if ind.M == 0 || ind.N == 0 {
return
}
if !matrix.EqualTypes(A, B, C) {
return errors.New("Parameters not of same type")
}
switch A.(type) {
case *matrix.FloatMatrix:
Aa := A.FloatArray()
Ba := B.FloatArray()
Ca := C.FloatArray()
aval := alpha.Float()
bval := beta.Float()
if math.IsNaN(aval) || math.IsNaN(bval) {
return errors.New("alpha or beta not a number")
}
transB := linalg.ParamString(params.TransB)
transA := linalg.ParamString(params.TransA)
dgemm(transA, transB, ind.M, ind.N, ind.K, aval,
Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb, bval,
Ca[ind.OffsetC:], ind.LDc)
case *matrix.ComplexMatrix:
Aa := A.ComplexArray()
Ba := B.ComplexArray()
Ca := C.ComplexArray()
aval := alpha.Complex()
if cmplx.IsNaN(aval) {
return errors.New("alpha not a number")
}
bval := beta.Complex()
if cmplx.IsNaN(bval) {
return errors.New("beta not a number")
}
transB := linalg.ParamString(params.TransB)
transA := linalg.ParamString(params.TransA)
zgemm(transA, transB, ind.M, ind.N, ind.K, aval,
Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb, bval,
Ca[ind.OffsetC:], ind.LDc)
default:
return errors.New("Unknown type, not implemented")
}
//.........這裏部分代碼省略.........
示例15: Hbmv
/*
Matrix-vector product with a real symmetric or complex hermitian band matrix.
Computes with A real symmetric and banded of order n and with bandwidth k.
Y := alpha*A*X + beta*Y
ARGUMENTS
A float or complex n*n matrix
X float or complex n*1 matrix
Y float or complex n*1 matrix
alpha number (float or complex singleton matrix)
beta number (float or complex singleton matrix)
OPTIONS
uplo PLower or PUpper
n integer. If negative, the default value is used.
k integer. If negative, the default value is used.
The default value is k = max(0,A.Rows()-1).
ldA nonnegative integer. ldA >= k+1.
If zero, the default vaule is used.
incx nonzero integer
incy nonzero integer
offsetA nonnegative integer
offsetx nonnegative integer
offsety nonnegative integer
*/
func Hbmv(A, X, Y matrix.Matrix, alpha, beta matrix.Scalar, opts ...linalg.Option) (err error) {
var params *linalg.Parameters
params, err = linalg.GetParameters(opts...)
if err != nil {
return
}
ind := linalg.GetIndexOpts(opts...)
err = check_level2_func(ind, fsbmv, X, Y, A, params)
if err != nil {
return
}
if ind.N == 0 {
return
}
if !matrix.EqualTypes(A, X, Y) {
return errors.New("Parameters not of same type")
}
switch X.(type) {
case *matrix.FloatMatrix:
Xa := X.FloatArray()
Ya := Y.FloatArray()
Aa := A.FloatArray()
aval := alpha.Float()
bval := beta.Float()
if math.IsNaN(aval) || math.IsNaN(bval) {
return errors.New("alpha or beta not a number")
}
uplo := linalg.ParamString(params.Uplo)
dsbmv(uplo, ind.N, ind.K, aval, Aa[ind.OffsetA:], ind.LDa,
Xa[ind.OffsetX:], ind.IncX, bval, Ya[ind.OffsetY:], ind.IncY)
case *matrix.ComplexMatrix:
Xa := X.ComplexArray()
Ya := Y.ComplexArray()
Aa := A.ComplexArray()
aval := alpha.Complex()
bval := beta.Complex()
uplo := linalg.ParamString(params.Uplo)
zhbmv(uplo, ind.N, ind.K, aval, Aa[ind.OffsetA:], ind.LDa,
Xa[ind.OffsetX:], ind.IncX, bval, Ya[ind.OffsetY:], ind.IncY)
//zhbmv(uplo, ind.N, aval, Aa[ind.OffsetA:], ind.LDa,
// Xa[ind.OffsetX:], ind.IncX,
// bval, Ya[ind.OffsetY:], ind.IncY)
default:
return errors.New("Unknown type, not implemented")
}
return
}