當前位置: 首頁>>代碼示例>>Golang>>正文


Golang FloatMatrix.Size方法代碼示例

本文整理匯總了Golang中github.com/hrautila/go/opt/matrix.FloatMatrix.Size方法的典型用法代碼示例。如果您正苦於以下問題:Golang FloatMatrix.Size方法的具體用法?Golang FloatMatrix.Size怎麽用?Golang FloatMatrix.Size使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在github.com/hrautila/go/opt/matrix.FloatMatrix的用法示例。


在下文中一共展示了FloatMatrix.Size方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。

示例1: createLdlSolver

// not really needed.
func createLdlSolver(G *matrix.FloatMatrix, dims *DimensionSet, A *matrix.FloatMatrix, mnl int) *kktLdlSolver {
	kkt := new(kktLdlSolver)

	kkt.p, kkt.n = A.Size()
	kkt.ldK = kkt.n + kkt.p + mnl + dims.Sum("l", "q") + dims.SumPacked("s")
	kkt.K = matrix.FloatZeros(kkt.ldK, kkt.ldK)
	kkt.ipiv = make([]int32, kkt.ldK)
	kkt.u = matrix.FloatZeros(kkt.ldK, 1)
	kkt.g = matrix.FloatZeros(kkt.mnl+G.Rows(), 1)
	kkt.G = G
	kkt.A = A
	kkt.dims = dims
	kkt.mnl = mnl
	return kkt
}
開發者ID:hrautila,項目名稱:go.opt.old,代碼行數:16,代碼來源:kkt.go

示例2: kktLdl

// Solution of KKT equations by a dense LDL factorization of the
// 3 x 3 system.
//
// Returns a function that (1) computes the LDL factorization of
//
// [ H           A'   GG'*W^{-1} ]
// [ A           0    0          ],
// [ W^{-T}*GG   0   -I          ]
//
// given H, Df, W, where GG = [Df; G], and (2) returns a function for
// solving
//
// [ H     A'   GG'   ]   [ ux ]   [ bx ]
// [ A     0    0     ] * [ uy ] = [ by ].
// [ GG    0   -W'*W  ]   [ uz ]   [ bz ]
//
// H is n x n,  A is p x n, Df is mnl x n, G is N x n where
// N = dims['l'] + sum(dims['q']) + sum( k**2 for k in dims['s'] ).
//
func kktLdl(G *matrix.FloatMatrix, dims *DimensionSet, A *matrix.FloatMatrix, mnl int) (kktFactor, error) {

	p, n := A.Size()
	ldK := n + p + mnl + dims.At("l")[0] + dims.Sum("q") + dims.SumPacked("s")
	K := matrix.FloatZeros(ldK, ldK)
	ipiv := make([]int32, ldK)
	u := matrix.FloatZeros(ldK, 1)
	g := matrix.FloatZeros(mnl+G.Rows(), 1)

	factor := func(W *FloatMatrixSet, H, Df *matrix.FloatMatrix) (kktFunc, error) {
		var err error = nil
		// Zero K for each call.
		blas.ScalFloat(K, 0.0)
		if H != nil {
			K.SetSubMatrix(0, 0, H)
		}
		K.SetSubMatrix(n, 0, A)
		//fmt.Printf("G=\n%v\n", G)
		for k := 0; k < n; k++ {
			// g is (mnl + G.Rows(), 1) matrix, Df is (mnl, n), G is (N, n)
			if mnl > 0 {
				// set values g[0:mnl] = Df[,k]
				g.SetIndexes(matrix.MakeIndexSet(0, mnl, 1), Df.GetColumnArray(k, nil))
			}
			// set values g[mnl:] = G[,k]
			g.SetIndexes(matrix.MakeIndexSet(mnl, mnl+g.Rows(), 1), G.GetColumnArray(k, nil))
			scale(g, W, true, true)
			if err != nil {
				fmt.Printf("scale error: %s\n", err)
			}
			pack(g, K, dims, &la_.IOpt{"mnl", mnl}, &la_.IOpt{"offsety", k*ldK + n + p})
		}
		setDiagonal(K, n+p, n+n, ldK, ldK, -1.0)
		//fmt.Printf("K=\n%v\n", K)
		err = lapack.Sytrf(K, ipiv)
		//fmt.Printf("sytrf: K=\n%v\n", K)
		if err != nil {
			return nil, err
		}

		solve := func(x, y, z *matrix.FloatMatrix) (err error) {
			// Solve
			//
			//     [ H          A'   GG'*W^{-1} ]   [ ux   ]   [ bx        ]
			//     [ A          0    0          ] * [ uy   [ = [ by        ]
			//     [ W^{-T}*GG  0   -I          ]   [ W*uz ]   [ W^{-T}*bz ]
			//
			// and return ux, uy, W*uz.
			//
			// On entry, x, y, z contain bx, by, bz.  On exit, they contain
			// the solution ux, uy, W*uz.
			//fmt.Printf("** start solve **\n")
			//fmt.Printf("x=\n%v\n", x.ConvertToString())
			//fmt.Printf("z=\n%v\n", z.ConvertToString())
			err = nil
			blas.Copy(x, u)
			blas.Copy(y, u, &la_.IOpt{"offsety", n})
			//fmt.Printf("solving: u=\n%v\n", u.ConvertToString())
			//W.Print()
			err = scale(z, W, true, true)
			//fmt.Printf("solving: post-scale z=\n%v\n", z.ConvertToString())
			if err != nil {
				return
			}
			err = pack(z, u, dims, &la_.IOpt{"mnl", mnl}, &la_.IOpt{"offsety", n + p})
			//fmt.Printf("solve: post-Pack {mnl=%d, n=%d, p=%d} u=\n%v\n",
			//	mnl, n, p, u.ConvertToString())
			if err != nil {
				return
			}

			err = lapack.Sytrs(K, u, ipiv)
			if err != nil {
				return
			}

			blas.Copy(u, x, &la_.IOpt{"n", n})
			blas.Copy(u, y, &la_.IOpt{"n", p}, &la_.IOpt{"offsetx", n})
			err = unpack(u, z, dims, &la_.IOpt{"mnl", mnl}, &la_.IOpt{"offsetx", n + p})
			//fmt.Printf("** end solve **\n")
			//fmt.Printf("x=\n%v\n", x.ConvertToString())
//.........這裏部分代碼省略.........
開發者ID:hrautila,項目名稱:go.opt.old,代碼行數:101,代碼來源:kkt.go

示例3: Acent

// Computes analytic center of A*x <= b with A m by n of rank n.
// We assume that b > 0 and the feasible set is bounded.
func Acent(A, b *matrix.FloatMatrix, niters int) (*matrix.FloatMatrix, []float64) {

	if niters <= 0 {
		niters = MAXITERS
	}
	ntdecrs := make([]float64, 0, niters)

	if A.Rows() != b.Rows() {
		return nil, nil
	}

	m, n := A.Size()
	x := matrix.FloatZeros(n, 1)
	H := matrix.FloatZeros(n, n)
	// Helper m*n matrix
	Dmn := matrix.FloatZeros(m, n)

	for i := 0; i < niters; i++ {

		// Gradient is g = A^T * (1.0/(b - A*x)). d = 1.0/(b - A*x)
		// d is m*1 matrix, g is n*1 matrix
		d := b.Minus(A.Times(x))
		d.Apply(d, func(a float64) float64 { return 1.0 / a })
		g := A.Transpose().Times(d)

		// Hessian is H = A^T * diag(1./(b-A*x))^2 * A.
		// in the original python code expression d[:,n*[0]] creates
		// a m*n matrix where each column is copy of column 0.
		// We do it here manually.
		for i := 0; i < n; i++ {
			Dmn.SetColumnMatrix(i, d)
		}

		// Function mul creates element wise product of matrices.
		Asc := Dmn.Mul(A)
		blas.SyrkFloat(Asc, H, 1.0, 0.0, linalg.OptTrans)

		// Newton step is v = H^-1 * g.
		v := g.Copy().Neg()
		lapack.PosvFloat(H, v)

		// Directional derivative and Newton decrement.
		lam := blas.DotFloat(g, v)
		ntdecrs = append(ntdecrs, math.Sqrt(-lam))
		if ntdecrs[len(ntdecrs)-1] < TOL {
			fmt.Printf("last Newton decrement < TOL(%v)\n", TOL)
			return x, ntdecrs
		}

		// Backtracking line search.
		// y = d .* A*v
		y := d.Mul(A.Times(v))
		step := 1.0
		for 1-step*y.Max() < 0 {
			step *= BETA
		}

	search:
		for {
			// t = -step*y
			t := y.Copy().Scale(-step)
			// t = (1 + t) [e.g. t = 1 - step*y]
			t.Add(1.0)

			// ts = sum(log(1-step*y))
			ts := t.Log().Sum()
			if -ts < ALPHA*step*lam {
				break search
			}
			step *= BETA
		}
		v.Scale(step)
		x = x.Plus(v)
	}
	// no solution !!
	fmt.Printf("Iteration %d exhausted\n", niters)
	return x, ntdecrs
}
開發者ID:hrautila,項目名稱:go.opt.old,代碼行數:80,代碼來源:acent.go


注:本文中的github.com/hrautila/go/opt/matrix.FloatMatrix.Size方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。