當前位置: 首頁>>代碼示例>>Golang>>正文


Golang FloatMatrix.Mul方法代碼示例

本文整理匯總了Golang中github.com/hrautila/go/opt/matrix.FloatMatrix.Mul方法的典型用法代碼示例。如果您正苦於以下問題:Golang FloatMatrix.Mul方法的具體用法?Golang FloatMatrix.Mul怎麽用?Golang FloatMatrix.Mul使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在github.com/hrautila/go/opt/matrix.FloatMatrix的用法示例。


在下文中一共展示了FloatMatrix.Mul方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。

示例1: F2

func (p *FloorPlan) F2(x, z *matrix.FloatMatrix) (f, Df, H *matrix.FloatMatrix, err error) {
	f, Df, err = p.F1(x)
	x17 := matrix.FloatVector(x.FloatArray()[17:])
	tmp := p.Amin.Div(x17.Pow(3.0))
	tmp = z.Mul(tmp).Scale(2.0)
	diag := matrix.FloatDiagonal(5, tmp.FloatArray()...)
	H = matrix.FloatZeros(22, 22)
	H.SetSubMatrix(17, 17, diag)
	return
}
開發者ID:hrautila,項目名稱:go.opt.old,代碼行數:10,代碼來源:testcpl.go

示例2: computeScaling

/*
   Returns the Nesterov-Todd scaling W at points s and z, and stores the
   scaled variable in lmbda.

       W * z = W^{-T} * s = lmbda.

   W is a MatrixSet with entries:

   - W['dnl']: positive vector
   - W['dnli']: componentwise inverse of W['dnl']
   - W['d']: positive vector
   - W['di']: componentwise inverse of W['d']
   - W['v']: lists of 2nd order cone vectors with unit hyperbolic norms
   - W['beta']: list of positive numbers
   - W['r']: list of square matrices
   - W['rti']: list of square matrices.  rti[k] is the inverse transpose
     of r[k].

*/
func computeScaling(s, z, lmbda *matrix.FloatMatrix, dims *DimensionSet, mnl int) (W *FloatMatrixSet, err error) {
	/*DEBUGGED*/
	err = nil
	W = FloatSetNew("dnl", "dnli", "d", "di", "v", "beta", "r", "rti")

	// For the nonlinear block:
	//
	//     W['dnl'] = sqrt( s[:mnl] ./ z[:mnl] )
	//     W['dnli'] = sqrt( z[:mnl] ./ s[:mnl] )
	//     lambda[:mnl] = sqrt( s[:mnl] .* z[:mnl] )

	var stmp, ztmp, lmd *matrix.FloatMatrix
	if mnl > 0 {
		stmp = matrix.FloatVector(s.FloatArray()[:mnl])
		ztmp = matrix.FloatVector(z.FloatArray()[:mnl])
		dnl := stmp.Div(ztmp)
		dnl.Apply(dnl, math.Sqrt)
		dnli := dnl.Copy()
		dnli.Apply(dnli, func(a float64) float64 { return 1.0 / a })
		W.Set("dnl", dnl)
		W.Set("dnli", dnli)
		lmd = stmp.Mul(ztmp)
		lmd.Apply(lmd, math.Sqrt)
		lmbda.SetIndexes(matrix.MakeIndexSet(0, mnl, 1), lmd.FloatArray())
	} else {
		mnl = 0
	}

	// For the 'l' block:
	//
	//     W['d'] = sqrt( sk ./ zk )
	//     W['di'] = sqrt( zk ./ sk )
	//     lambdak = sqrt( sk .* zk )
	//
	// where sk and zk are the first dims['l'] entries of s and z.
	// lambda_k is stored in the first dims['l'] positions of lmbda.

	m := dims.At("l")[0]
	td := s.FloatArray()
	stmp = matrix.FloatVector(td[mnl : mnl+m])
	zd := z.FloatArray()
	//fmt.Printf("zdata=%v\n", zd[mnl:mnl+m])
	ztmp = matrix.FloatVector(zd[mnl : mnl+m])
	d := stmp.Div(ztmp)
	d.Apply(d, math.Sqrt)
	di := d.Copy()
	di.Apply(di, func(a float64) float64 { return 1.0 / a })
	//fmt.Printf("d:\n%v\n", d)
	//fmt.Printf("di:\n%v\n", di)
	W.Set("d", d)
	W.Set("di", di)
	lmd = stmp.Mul(ztmp)
	lmd.Apply(lmd, math.Sqrt)
	// lmd has indexes mnl:mnl+m and length of m
	lmbda.SetIndexes(matrix.MakeIndexSet(mnl, mnl+m, 1), lmd.FloatArray())
	//fmt.Printf("after l:\n%v\n", lmbda)

	/*
	   For the 'q' blocks, compute lists 'v', 'beta'.

	   The vector v[k] has unit hyperbolic norm:

	       (sqrt( v[k]' * J * v[k] ) = 1 with J = [1, 0; 0, -I]).

	   beta[k] is a positive scalar.

	   The hyperbolic Householder matrix H = 2*v[k]*v[k]' - J
	   defined by v[k] satisfies

	       (beta[k] * H) * zk  = (beta[k] * H) \ sk = lambda_k

	   where sk = s[indq[k]:indq[k+1]], zk = z[indq[k]:indq[k+1]].

	   lambda_k is stored in lmbda[indq[k]:indq[k+1]].
	*/
	ind := mnl + dims.At("l")[0]
	var beta *matrix.FloatMatrix

	for _, k := range dims.At("q") {
		W.Append("v", matrix.FloatZeros(k, 1))
	}
//.........這裏部分代碼省略.........
開發者ID:hrautila,項目名稱:go.opt.old,代碼行數:101,代碼來源:misc.go


注:本文中的github.com/hrautila/go/opt/matrix.FloatMatrix.Mul方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。