本文整理匯總了Golang中github.com/dedis/crypto/nist.Int.Neg方法的典型用法代碼示例。如果您正苦於以下問題:Golang Int.Neg方法的具體用法?Golang Int.Neg怎麽用?Golang Int.Neg使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類github.com/dedis/crypto/nist.Int
的用法示例。
在下文中一共展示了Int.Neg方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: decodePoint
// Decode an Edwards curve point into the given x,y coordinates.
// Returns an error if the input does not denote a valid curve point.
// Note that this does NOT check if the point is in the prime-order subgroup:
// an adversary could create an encoding denoting a point
// on the twist of the curve, or in a larger subgroup.
// However, the "safecurves" criteria (http://safecurves.cr.yp.to)
// ensure that none of these other subgroups are small
// other than the tiny ones represented by the cofactor;
// hence Diffie-Hellman exchange can be done without subgroup checking
// without exposing more than the least-significant bits of the scalar.
func (c *curve) decodePoint(bb []byte, x, y *nist.Int) error {
// Convert from little-endian
//fmt.Printf("decoding:\n%s\n", hex.Dump(bb))
b := make([]byte, len(bb))
util.Reverse(b, bb)
// Extract the sign of the x-coordinate
xsign := uint(b[0] >> 7)
b[0] &^= 0x80
// Extract the y-coordinate
y.V.SetBytes(b)
y.M = &c.P
// Compute the corresponding x-coordinate
if !c.solveForX(x, y) {
return errors.New("invalid elliptic curve point")
}
if c.coordSign(x) != xsign {
x.Neg(x)
}
return nil
}
示例2: HideEncode
// Elligator 2 reverse-map from point to uniform representative.
// Returns nil if point has no uniform representative.
// See section 5.3 of the Elligator paper.
func (el *el2param) HideEncode(P point, rand cipher.Stream) []byte {
edx, edy := P.getXY()
var x, y, r, xpA, t1 nist.Int
// convert Edwards to Montgomery coordinates
el.ed2mont(&x, &y, edx, edy)
// condition 1: x != -A
if x.Equal(&el.negA) {
return nil // x = -A, no representative
}
// condition 2: if y=0, then x=0
if y.V.Sign() == 0 && x.V.Sign() != 0 {
return nil // y=0 but x!=0, no representative
}
// condition 3: -ux(x+A) is a square
xpA.Add(&x, &el.A)
t1.Mul(&el.u, &x).Mul(&t1, &xpA).Neg(&t1)
if math.Jacobi(&t1.V, t1.M) < 0 {
return nil // not a square, no representative
}
if y.V.Cmp(&el.pm1d2) <= 0 { // y in image of sqrt function
r.Mul(&xpA, &el.u).Div(&x, &r)
} else { // y not in image of sqrt function
r.Mul(&el.u, &x).Div(&xpA, &r)
}
r.Neg(&r)
el.sqrt(&r, &r)
// Sanity check on result
if r.V.Cmp(&el.pm1d2) > 0 {
panic("el2: r too big")
}
// Map representative to a byte-string by padding the upper byte.
// This assumes that the prime c.P is close enough to a power of 2
// that the adversary will never notice the "missing" values;
// this is true for the class of curves Elligator1 was designed for.
rep, _ := r.MarshalBinary()
padmask := el.padmask()
if padmask != 0 {
var pad [1]byte
rand.XORKeyStream(pad[:], pad[:])
rep[0] |= pad[0] & padmask
}
return rep
}
示例3: sqrt
// Compute the square root function,
// specified in section 5.5 of the Elligator paper.
func (el *el2param) sqrt(r, a *nist.Int) {
var b, b2 nist.Int
b.Exp(a, &el.pp3d8) // b = a^((p+3)/8); b in {a,-a}
b2.Mul(&b, &b) // b^2 = a?
if !b2.Equal(a) {
b.Mul(&b, &el.sqrtm1) // b*sqrt(-1)
}
if b.V.Cmp(&el.pm1d2) > 0 { // |b|
b.Neg(&b)
}
r.Set(&b)
}
示例4: HideDecode
// Elligator 2 forward-map from representative to Edwards curve point.
// Currently a straightforward, unoptimized implementation.
// See section 5.2 of the Elligator paper.
func (el *el2param) HideDecode(P point, rep []byte) {
ec := el.ec
var r, v, x, y, t1, edx, edy nist.Int
l := ec.PointLen()
if len(rep) != l {
panic("el2Map: wrong representative length")
}
// Take the appropriate number of bits from the representative.
buf := make([]byte, l)
copy(buf, rep)
buf[0] &^= el.padmask() // mask off the padding bits
r.InitBytes(buf, &ec.P)
// v = -A/(1+ur^2)
v.Mul(&r, &r).Mul(&el.u, &v).Add(&ec.one, &v).Div(&el.negA, &v)
// e = Chi(v^3+Av^2+Bv), where B=1 because of ed2mont equivalence
t1.Add(&v, &el.A).Mul(&t1, &v).Add(&t1, &ec.one).Mul(&t1, &v)
e := math.Jacobi(&t1.V, t1.M)
// x = ev-(1-e)A/2
if e == 1 {
x.Set(&v)
} else {
x.Add(&v, &el.A).Neg(&x)
}
// y = -e sqrt(x^3+Ax^2+Bx), where B=1
y.Add(&x, &el.A).Mul(&y, &x).Add(&y, &ec.one).Mul(&y, &x)
el.sqrt(&y, &y)
if e == 1 {
y.Neg(&y) // -e factor
}
// Convert Montgomery to Edwards coordinates
el.mont2ed(&edx, &edy, &x, &y)
// Sanity-check
if !ec.onCurve(&edx, &edy) {
panic("elligator2 produced invalid point")
}
P.initXY(&edx.V, &edy.V, ec.self)
}
示例5: init
// Initialize a twisted Edwards curve with given parameters.
// Caller passes pointers to null and base point prototypes to be initialized.
func (c *curve) init(self abstract.Group, p *Param, fullGroup bool,
null, base point) *curve {
c.self = self
c.Param = *p
c.full = fullGroup
c.null = null
// Edwards curve parameters as ModInts for convenience
c.a.Init(&p.A, &p.P)
c.d.Init(&p.D, &p.P)
// Cofactor
c.cofact.Init64(int64(p.R), &c.P)
// Determine the modulus for scalars on this curve.
// Note that we do NOT initialize c.order with Init(),
// as that would normalize to the modulus, resulting in zero.
// Just to be sure it's never used, we leave c.order.M set to nil.
// We want it to be in a ModInt so we can pass it to P.Mul(),
// but the scalar's modulus isn't needed for point multiplication.
if fullGroup {
// Scalar modulus is prime-order times the ccofactor
c.order.V.SetInt64(int64(p.R)).Mul(&c.order.V, &p.Q)
} else {
c.order.V.Set(&p.Q) // Prime-order subgroup
}
// Useful ModInt constants for this curve
c.zero.Init64(0, &c.P)
c.one.Init64(1, &c.P)
// Identity element is (0,1)
null.initXY(zero, one, self)
// Base point B
var bx, by *big.Int
if !fullGroup {
bx, by = &p.PBX, &p.PBY
} else {
bx, by = &p.FBX, &p.FBY
base.initXY(&p.FBX, &p.FBY, self)
}
if by.Sign() == 0 {
// No standard base point was defined, so pick one.
// Find the lowest-numbered y-coordinate that works.
//println("Picking base point:")
var x, y nist.Int
for y.Init64(2, &c.P); ; y.Add(&y, &c.one) {
if !c.solveForX(&x, &y) {
continue // try another y
}
if c.coordSign(&x) != 0 {
x.Neg(&x) // try positive x first
}
base.initXY(&x.V, &y.V, self)
if c.validPoint(base) {
break // got one
}
x.Neg(&x) // try -bx
if c.validPoint(base) {
break // got one
}
}
//println("BX: "+x.V.String())
//println("BY: "+y.V.String())
bx, by = &x.V, &y.V
}
base.initXY(bx, by, self)
// Uniform representation encoding methods,
// only useful when using the full group.
// (Points taken from the subgroup would be trivially recognizable.)
if fullGroup {
if p.Elligator1s.Sign() != 0 {
c.hide = new(el1param).init(c, &p.Elligator1s)
} else if p.Elligator2u.Sign() != 0 {
c.hide = new(el2param).init(c, &p.Elligator2u)
}
// XXX Elligator Squared
}
// Sanity checks
if !c.validPoint(null) {
panic("invalid identity point " + null.String())
}
if !c.validPoint(base) {
panic("invalid base point " + base.String())
}
return c
}
示例6: pickPoint
// Pick a [pseudo-]random curve point with optional embedded data,
// filling in the point's x,y coordinates
// and returning any remaining data not embedded.
func (c *curve) pickPoint(P point, data []byte, rand cipher.Stream) []byte {
// How much data to embed?
dl := c.pickLen()
if dl > len(data) {
dl = len(data)
}
// Retry until we find a valid point
var x, y nist.Int
var Q abstract.Point
for {
// Get random bits the size of a compressed Point encoding,
// in which the topmost bit is reserved for the x-coord sign.
l := c.PointLen()
b := make([]byte, l)
rand.XORKeyStream(b, b) // Interpret as little-endian
if data != nil {
b[0] = byte(dl) // Encode length in low 8 bits
copy(b[1:1+dl], data) // Copy in data to embed
}
util.Reverse(b, b) // Convert to big-endian form
xsign := b[0] >> 7 // save x-coordinate sign bit
b[0] &^= 0xff << uint(c.P.BitLen()&7) // clear high bits
y.M = &c.P // set y-coordinate
y.SetBytes(b)
if !c.solveForX(&x, &y) { // Corresponding x-coordinate?
continue // none, retry
}
// Pick a random sign for the x-coordinate
if c.coordSign(&x) != uint(xsign) {
x.Neg(&x)
}
// Initialize the point
P.initXY(&x.V, &y.V, c.self)
if c.full {
// If we're using the full group,
// we just need any point on the curve, so we're done.
return data[dl:]
}
// We're using the prime-order subgroup,
// so we need to make sure the point is in that subgroup.
// If we're not trying to embed data,
// we can convert our point into one in the subgroup
// simply by multiplying it by the cofactor.
if data == nil {
P.Mul(P, &c.cofact) // multiply by cofactor
if P.Equal(c.null) {
continue // unlucky; try again
}
return data[dl:]
}
// Since we need the point's y-coordinate to make sense,
// we must simply check if the point is in the subgroup
// and retry point generation until it is.
if Q == nil {
Q = c.self.Point()
}
Q.Mul(P, &c.order)
if Q.Equal(c.null) {
return data[dl:]
}
// Keep trying...
}
}