本文整理匯總了Golang中github.com/dedis/crypto/nist.Int.Init64方法的典型用法代碼示例。如果您正苦於以下問題:Golang Int.Init64方法的具體用法?Golang Int.Init64怎麽用?Golang Int.Init64使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類github.com/dedis/crypto/nist.Int
的用法示例。
在下文中一共展示了Int.Init64方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: init
// Initialize Elligator 1 parameters given magic point s
func (el *el1param) init(ec *curve, s *big.Int) *el1param {
var two, invc, cm1, d nist.Int
el.ec = ec
el.s.Init(s, &ec.P)
// c = 2/s^2
two.Init64(2, &ec.P)
el.c.Mul(&el.s, &el.s).Div(&two, &el.c)
// r = c+1/c
invc.Inv(&el.c)
el.r.Add(&el.c, &invc)
// Precomputed values
el.r2m2.Mul(&el.r, &el.r).Sub(&el.r2m2, &two) // r^2-2
el.invc2.Mul(&invc, &invc) // 1/c^2
el.pp1d4.Add(&ec.P, one).Div(&el.pp1d4, big.NewInt(4)) // (p+1)/4
cm1.Sub(&el.c, &ec.one)
el.cm1s.Mul(&cm1, &el.s) // (c-1)s
el.m2.Init64(-2, &ec.P) // -2
// 2s(c-1)Chi(c)/r
chi(&el.c3x, &el.c)
el.c3x.Mul(&el.c3x, &two).Mul(&el.c3x, &el.s).Mul(&el.c3x, &cm1)
el.c3x.Div(&el.c3x, &el.r)
// Sanity check: d = -(c+1)^2/(c-1)^2
d.Add(&el.c, &ec.one).Div(&d, &cm1).Mul(&d, &d).Neg(&d)
if d.Cmp(&ec.d) != 0 {
panic("el1 init: d came out wrong")
}
return el
}
示例2: init
// Initialize a twisted Edwards curve with given parameters.
// Caller passes pointers to null and base point prototypes to be initialized.
func (c *curve) init(self abstract.Group, p *Param, fullGroup bool,
null, base point) *curve {
c.self = self
c.Param = *p
c.full = fullGroup
c.null = null
// Edwards curve parameters as ModInts for convenience
c.a.Init(&p.A, &p.P)
c.d.Init(&p.D, &p.P)
// Cofactor
c.cofact.Init64(int64(p.R), &c.P)
// Determine the modulus for scalars on this curve.
// Note that we do NOT initialize c.order with Init(),
// as that would normalize to the modulus, resulting in zero.
// Just to be sure it's never used, we leave c.order.M set to nil.
// We want it to be in a ModInt so we can pass it to P.Mul(),
// but the scalar's modulus isn't needed for point multiplication.
if fullGroup {
// Scalar modulus is prime-order times the ccofactor
c.order.V.SetInt64(int64(p.R)).Mul(&c.order.V, &p.Q)
} else {
c.order.V.Set(&p.Q) // Prime-order subgroup
}
// Useful ModInt constants for this curve
c.zero.Init64(0, &c.P)
c.one.Init64(1, &c.P)
// Identity element is (0,1)
null.initXY(zero, one, self)
// Base point B
var bx, by *big.Int
if !fullGroup {
bx, by = &p.PBX, &p.PBY
} else {
bx, by = &p.FBX, &p.FBY
base.initXY(&p.FBX, &p.FBY, self)
}
if by.Sign() == 0 {
// No standard base point was defined, so pick one.
// Find the lowest-numbered y-coordinate that works.
//println("Picking base point:")
var x, y nist.Int
for y.Init64(2, &c.P); ; y.Add(&y, &c.one) {
if !c.solveForX(&x, &y) {
continue // try another y
}
if c.coordSign(&x) != 0 {
x.Neg(&x) // try positive x first
}
base.initXY(&x.V, &y.V, self)
if c.validPoint(base) {
break // got one
}
x.Neg(&x) // try -bx
if c.validPoint(base) {
break // got one
}
}
//println("BX: "+x.V.String())
//println("BY: "+y.V.String())
bx, by = &x.V, &y.V
}
base.initXY(bx, by, self)
// Uniform representation encoding methods,
// only useful when using the full group.
// (Points taken from the subgroup would be trivially recognizable.)
if fullGroup {
if p.Elligator1s.Sign() != 0 {
c.hide = new(el1param).init(c, &p.Elligator1s)
} else if p.Elligator2u.Sign() != 0 {
c.hide = new(el2param).init(c, &p.Elligator2u)
}
// XXX Elligator Squared
}
// Sanity checks
if !c.validPoint(null) {
panic("invalid identity point " + null.String())
}
if !c.validPoint(base) {
panic("invalid base point " + base.String())
}
return c
}
示例3: chi
func chi(r, v *nist.Int) {
r.Init64(int64(math.Jacobi(&v.V, v.M)), v.M)
}