本文整理匯總了Golang中github.com/cpmech/gosl/la.Triplet.Put方法的典型用法代碼示例。如果您正苦於以下問題:Golang Triplet.Put方法的具體用法?Golang Triplet.Put怎麽用?Golang Triplet.Put使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類github.com/cpmech/gosl/la.Triplet
的用法示例。
在下文中一共展示了Triplet.Put方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: AddToKb
// AddToKb adds element K to global Jacobian matrix Kb
func (o *ElastRod) AddToKb(Kb *la.Triplet, sol *Solution, firstIt bool) (err error) {
for i, I := range o.Umap {
for j, J := range o.Umap {
Kb.Put(I, J, o.K[i][j])
}
}
return
}
示例2: Jacobian
/* Jacobian
========
Calculates (with N=n-1):
df0dx0, df0dx1, df0dx2, ... df0dxN
df1dx0, df1dx1, df1dx2, ... df1dxN
. . . . . . . . . . . . .
dfNdx0, dfNdx1, dfNdx2, ... dfNdxN
INPUT:
ffcn : f(x) function
x : station where dfdx has to be calculated
fx : f @ x
w : workspace with size == n == len(x)
RETURNS:
J : dfdx @ x [must be pre-allocated] */
func Jacobian(J *la.Triplet, ffcn Cb_f, x, fx, w []float64, distr bool) (err error) {
ndim := len(x)
start, endp1 := 0, ndim
if distr {
id, sz := mpi.Rank(), mpi.Size()
start, endp1 = (id*ndim)/sz, ((id+1)*ndim)/sz
if J.Max() == 0 {
J.Init(ndim, ndim, (endp1-start)*ndim)
}
} else {
if J.Max() == 0 {
J.Init(ndim, ndim, ndim*ndim)
}
}
J.Start()
// NOTE: cannot split calculation by columns unless the f function is
// independently calculated by each MPI processor.
// Otherwise, the AllReduce in f calculation would
// join pieces of f from different processors calculated for
// different x values (δx[col] from different columns).
/*
for col := start; col < endp1; col++ {
xsafe := x[col]
delta := math.Sqrt(EPS * max(CTE1, math.Abs(xsafe)))
x[col] = xsafe + delta
ffcn(w, x) // fnew
io.Pforan("x = %v, f = %v\n", x, w)
for row := 0; row < ndim; row++ {
J.Put(row, col, (w[row]-fx[row])/delta)
}
x[col] = xsafe
}
*/
var df float64
for col := 0; col < ndim; col++ {
xsafe := x[col]
delta := math.Sqrt(EPS * max(CTE1, math.Abs(xsafe)))
x[col] = xsafe + delta
err = ffcn(w, x) // w := f(x+δx[col])
if err != nil {
return
}
for row := start; row < endp1; row++ {
df = w[row] - fx[row]
//if math.Abs(df) > EPS {
J.Put(row, col, df/delta)
//}
}
x[col] = xsafe
}
return
}
示例3: AddToKb
// AddToKb adds element K to global Jacobian matrix Kb
func (o *Rod) AddToKb(Kb *la.Triplet, sol *Solution, firstIt bool) (err error) {
// zero K matrix
la.MatFill(o.K, 0)
la.MatFill(o.M, 0) // TODO: implement mass matrix
// for each integration point
var E float64
nverts := o.Cell.Shp.Nverts
for idx, ip := range o.IpsElem {
// interpolation functions, gradients and variables @ ip
err = o.ipvars(idx, sol)
if err != nil {
return
}
// auxiliary
coef := ip[3]
Jvec := o.Cell.Shp.Jvec3d
G := o.Cell.Shp.Gvec
J := o.Cell.Shp.J
// add contribution to consistent tangent matrix
for m := 0; m < nverts; m++ {
for n := 0; n < nverts; n++ {
for i := 0; i < o.Ndim; i++ {
for j := 0; j < o.Ndim; j++ {
r := i + m*o.Ndim
c := j + n*o.Ndim
E, err = o.Model.CalcD(o.States[idx], firstIt)
if err != nil {
return
}
o.K[r][c] += coef * o.A * E * G[m] * G[n] * Jvec[i] * Jvec[j] / J
}
}
}
}
}
// add K to sparse matrix Kb
for i, I := range o.Umap {
for j, J := range o.Umap {
Kb.Put(I, J, o.K[i][j])
}
}
return
}
示例4: main
func main() {
mpi.Start(false)
defer func() {
mpi.Stop(false)
}()
if mpi.Rank() == 0 {
chk.PrintTitle("Test SumToRoot 01")
}
M := [][]float64{
{1000, 1000, 1000, 1011, 1021, 1000},
{1000, 1000, 1000, 1012, 1022, 1000},
{1000, 1000, 1000, 1013, 1023, 1000},
{1011, 1012, 1013, 1000, 1000, 1000},
{1021, 1022, 1023, 1000, 1000, 1000},
{1000, 1000, 1000, 1000, 1000, 1000},
}
id, sz, m := mpi.Rank(), mpi.Size(), len(M)
start, endp1 := (id*m)/sz, ((id+1)*m)/sz
if sz > 6 {
chk.Panic("this test works with at most 6 processors")
}
var J la.Triplet
J.Init(m, m, m*m)
for i := start; i < endp1; i++ {
for j := 0; j < m; j++ {
J.Put(i, j, M[i][j])
}
}
la.PrintMat(fmt.Sprintf("J @ proc # %d", id), J.ToMatrix(nil).ToDense(), "%10.1f", false)
la.SpTriSumToRoot(&J)
var tst testing.T
if mpi.Rank() == 0 {
chk.Matrix(&tst, "J @ proc 0", 1.0e-17, J.ToMatrix(nil).ToDense(), [][]float64{
{1000, 1000, 1000, 1011, 1021, 1000},
{1000, 1000, 1000, 1012, 1022, 1000},
{1000, 1000, 1000, 1013, 1023, 1000},
{1011, 1012, 1013, 1000, 1000, 1000},
{1021, 1022, 1023, 1000, 1000, 1000},
{1000, 1000, 1000, 1000, 1000, 1000},
})
}
}
示例5: AddToKb
// adds element K to global Jacobian matrix Kb
func (o Rod) AddToKb(Kb *la.Triplet, sol *Solution, firstIt bool) (ok bool) {
// zero K matrix
la.MatFill(o.K, 0)
la.MatFill(o.M, 0)
// for each integration point
nverts := o.Shp.Nverts
ndim := Global.Ndim
for idx, ip := range o.IpsElem {
// interpolation functions, gradients and variables @ ip
if !o.ipvars(idx, sol) {
return
}
// auxiliary
coef := ip.W
Jvec := o.Shp.Jvec3d
G := o.Shp.Gvec
J := o.Shp.J
// add contribution to consistent tangent matrix
for m := 0; m < nverts; m++ {
for n := 0; n < nverts; n++ {
for i := 0; i < ndim; i++ {
for j := 0; j < ndim; j++ {
r := i + m*ndim
c := j + n*ndim
E, err := o.Model.CalcD(o.States[idx], firstIt)
if LogErr(err, "AddToKb") {
return
}
o.K[r][c] += coef * o.A * E * G[m] * G[n] * Jvec[i] * Jvec[j] / J
}
}
}
}
}
// add K to sparse matrix Kb
for i, I := range o.Umap {
for j, J := range o.Umap {
Kb.Put(I, J, o.K[i][j])
}
}
return true
}
示例6: AddToKb
// adds element K to global Jacobian matrix Kb
func (o Beam) AddToKb(Kb *la.Triplet, sol *Solution, firstIt bool) (ok bool) {
if Global.Sim.Data.Steady {
for i, I := range o.Umap {
for j, J := range o.Umap {
Kb.Put(I, J, o.K[i][j])
}
}
} else {
dc := Global.DynCoefs
for i, I := range o.Umap {
for j, J := range o.Umap {
Kb.Put(I, J, o.M[i][j]*dc.α1+o.K[i][j])
}
}
}
return true
}
示例7: AddToKb
// adds element K to global Jacobian matrix Kb
func (o *Beam) AddToKb(Kb *la.Triplet, sol *Solution, firstIt bool) (err error) {
if sol.Steady {
for i, I := range o.Umap {
for j, J := range o.Umap {
Kb.Put(I, J, o.K[i][j])
}
}
return
}
α1 := sol.DynCfs.α1
for i, I := range o.Umap {
for j, J := range o.Umap {
Kb.Put(I, J, o.M[i][j]*α1+o.K[i][j])
}
}
return
}
示例8: main
func main() {
mpi.Start(false)
defer func() {
mpi.Stop(false)
}()
myrank := mpi.Rank()
if myrank == 0 {
chk.PrintTitle("Test MUMPS Sol 02")
}
ndim := 10
id, sz := mpi.Rank(), mpi.Size()
start, endp1 := (id*ndim)/sz, ((id+1)*ndim)/sz
if mpi.Size() > ndim {
chk.Panic("the number of processors must be smaller than or equal to %d", ndim)
}
b := make([]float64, ndim)
var t la.Triplet
t.Init(ndim, ndim, ndim*ndim)
for i := start; i < endp1; i++ {
j := i
if i > 0 {
j = i - 1
}
for ; j < ndim; j++ {
val := 10.0 - float64(j)
if i > j {
val -= 1.0
}
t.Put(i, j, val)
}
b[i] = float64(i + 1)
}
x_correct := []float64{-1, 8, -65, 454, -2725, 13624, -54497, 163490, -326981, 326991}
sum_b_to_root := true
la.RunMumpsTestR(&t, 1e-4, b, x_correct, sum_b_to_root)
}
示例9: AddToKb
// AddToKb adds element K to global Jacobian matrix Kb
func (o *ElemPhi) AddToKb(Kb *la.Triplet, sol *Solution, firstIt bool) (err error) {
// auxiliary
nverts := o.Cell.Shp.Nverts
// zero K matrix
la.MatFill(o.K, 0)
dt := sol.Dt * 2
// for each integration point
for iip, ip := range o.IpsElem {
// interpolation functions and gradients
err = o.Cell.Shp.CalcAtIp(o.X, ip, true)
if err != nil {
return
}
// auxiliary variables
coef := o.Cell.Shp.J * ip[3]
S := o.Cell.Shp.S
G := o.Cell.Shp.G
// add to right hand side vector
for m := 0; m < nverts; m++ {
for n := 0; n < nverts; n++ {
o.K[m][n] -= coef * (S[m]*S[n] + dt*dt/6.0*(o.v_0[iip][0]*G[m][0]+o.v_0[iip][1]*G[m][1])*(o.v_0[iip][0]*G[n][0]+o.v_0[iip][1]*G[n][1])) / dt
}
}
}
// add K to sparse matrix Kb
for i, I := range o.Umap {
for j, J := range o.Umap {
Kb.Put(I, J, o.K[i][j])
}
}
return
}
示例10: Assemble
func Assemble(K11, K12 *la.Triplet, F1 []float64, src Cb_src, g *Grid2D, e *Equations) {
K11.Start()
K12.Start()
la.VecFill(F1, 0.0)
kx, ky := 1.0, 1.0
alp, bet, gam := 2.0*(kx/g.Dxx+ky/g.Dyy), -kx/g.Dxx, -ky/g.Dyy
mol := []float64{alp, bet, bet, gam, gam}
for i, I := range e.RF1 {
col, row := I%g.Nx, I/g.Nx
nodes := []int{I, I - 1, I + 1, I - g.Nx, I + g.Nx} // I, left, right, bottom, top
if col == 0 {
nodes[1] = nodes[2]
}
if col == g.Nx-1 {
nodes[2] = nodes[1]
}
if row == 0 {
nodes[3] = nodes[4]
}
if row == g.Ny-1 {
nodes[4] = nodes[3]
}
for k, J := range nodes {
j1, j2 := e.FR1[J], e.FR2[J] // 1 or 2?
if j1 > -1 { // 11
K11.Put(i, j1, mol[k])
} else { // 12
K12.Put(i, j2, mol[k])
}
}
if src != nil {
x := float64(col) * g.Dx
y := float64(row) * g.Dy
F1[i] += src(x, y)
}
}
}
示例11: AddToKb
// AddToKb adds element K to global Jacobian matrix Kb
func (o *ElemPhi) AddToKb(Kb *la.Triplet, sol *Solution, firstIt bool) (ok bool) {
// auxiliary
β1 := Global.DynCoefs.β1
nverts := o.Shp.Nverts
// zero K matrix
la.MatFill(o.K, 0)
// for each integration point
for _, ip := range o.IpsElem {
// interpolation functions and gradients
if LogErr(o.Shp.CalcAtIp(o.X, ip, true), "InterpStarVars") {
return
}
// auxiliary variables
coef := o.Shp.J * ip.W
S := o.Shp.S
// add to right hand side vector
for m := 0; m < nverts; m++ {
for n := 0; n < nverts; n++ {
o.K[m][n] += coef * S[m] * S[n] * β1
}
}
}
// add K to sparse matrix Kb
for i, I := range o.Umap {
for j, J := range o.Umap {
Kb.Put(I, J, o.K[i][j])
}
}
return true
}
示例12: Jacobian
// Jacobian computes Jacobian (sparse) matrix
// Calculates (with N=n-1):
// df0dx0, df0dx1, df0dx2, ... df0dxN
// df1dx0, df1dx1, df1dx2, ... df1dxN
// . . . . . . . . . . . . .
// dfNdx0, dfNdx1, dfNdx2, ... dfNdxN
// INPUT:
// ffcn : f(x) function
// x : station where dfdx has to be calculated
// fx : f @ x
// w : workspace with size == n == len(x)
// RETURNS:
// J : dfdx @ x [must be pre-allocated]
func Jacobian(J *la.Triplet, ffcn Cb_f, x, fx, w []float64) (err error) {
ndim := len(x)
start, endp1 := 0, ndim
if J.Max() == 0 {
J.Init(ndim, ndim, ndim*ndim)
}
J.Start()
var df float64
for col := 0; col < ndim; col++ {
xsafe := x[col]
delta := math.Sqrt(EPS * max(CTE1, math.Abs(xsafe)))
x[col] = xsafe + delta
err = ffcn(w, x) // w := f(x+δx[col])
if err != nil {
return
}
for row := start; row < endp1; row++ {
df = w[row] - fx[row]
J.Put(row, col, df/delta)
}
x[col] = xsafe
}
return
}
示例13: IpBmatrix_sparse
func IpBmatrix_sparse(B *la.Triplet, ndim, nne int, G [][]float64, radius float64, S []float64, axisym bool) {
B.Start()
if ndim == 3 {
for i := 0; i < nne; i++ {
B.Put(0, 0+i*3, G[i][0])
B.Put(1, 1+i*3, G[i][1])
B.Put(2, 2+i*3, G[i][2])
B.Put(3, 0+i*3, G[i][1]/SQ2)
B.Put(4, 1+i*3, G[i][2]/SQ2)
B.Put(5, 2+i*3, G[i][0]/SQ2)
B.Put(3, 1+i*3, G[i][0]/SQ2)
B.Put(4, 2+i*3, G[i][1]/SQ2)
B.Put(5, 0+i*3, G[i][2]/SQ2)
}
return
}
if axisym {
for i := 0; i < nne; i++ {
B.Put(0, 0+i*2, G[i][0])
B.Put(1, 1+i*2, G[i][1])
B.Put(2, 0+i*2, S[i]/radius)
B.Put(3, 0+i*2, G[i][1]/SQ2)
B.Put(3, 1+i*2, G[i][0]/SQ2)
}
return
}
for i := 0; i < nne; i++ {
B.Put(0, 0+i*2, G[i][0])
B.Put(1, 1+i*2, G[i][1])
B.Put(3, 0+i*2, G[i][1]/SQ2)
B.Put(3, 1+i*2, G[i][0]/SQ2)
}
}
示例14: main
func main() {
// input matrix in Triplet format
// including repeated positions. e.g. (0,0)
var A la.Triplet
A.Init(5, 5, 13)
A.Put(0, 0, 1.0) // << repeated
A.Put(0, 0, 1.0) // << repeated
A.Put(1, 0, 3.0)
A.Put(0, 1, 3.0)
A.Put(2, 1, -1.0)
A.Put(4, 1, 4.0)
A.Put(1, 2, 4.0)
A.Put(2, 2, -3.0)
A.Put(3, 2, 1.0)
A.Put(4, 2, 2.0)
A.Put(2, 3, 2.0)
A.Put(1, 4, 6.0)
A.Put(4, 4, 1.0)
// right-hand-side
b := []float64{8.0, 45.0, -3.0, 3.0, 19.0}
// solve
x, err := la.SolveRealLinSys(&A, b)
if err != nil {
io.Pfred("solver failed:\n%v", err)
return
}
// output
la.PrintMat("a", A.ToMatrix(nil).ToDense(), "%5g", false)
la.PrintVec("b", b, "%v ", false)
la.PrintVec("x", x, "%v ", false)
}
示例15: main
func main() {
// input matrix in Triplet format
// including repeated positions. e.g. (0,0)
var A la.Triplet
A.Init(5, 5, 13)
A.Put(0, 0, 1.0) // << repeated
A.Put(0, 0, 1.0) // << repeated
A.Put(1, 0, 3.0)
A.Put(0, 1, 3.0)
A.Put(2, 1, -1.0)
A.Put(4, 1, 4.0)
A.Put(1, 2, 4.0)
A.Put(2, 2, -3.0)
A.Put(3, 2, 1.0)
A.Put(4, 2, 2.0)
A.Put(2, 3, 2.0)
A.Put(1, 4, 6.0)
A.Put(4, 4, 1.0)
// right-hand-side
b := []float64{8.0, 45.0, -3.0, 3.0, 19.0}
// allocate solver
lis := la.GetSolver("umfpack")
defer lis.Clean()
// info
symmetric := false
verbose := false
timing := false
// initialise solver (R)eal
err := lis.InitR(&A, symmetric, verbose, timing)
if err != nil {
io.Pfred("solver failed:\n%v", err)
return
}
// factorise
err = lis.Fact()
if err != nil {
io.Pfred("solver failed:\n%v", err)
return
}
// solve (R)eal
var dummy bool
x := make([]float64, len(b))
err = lis.SolveR(x, b, dummy) // x := inv(a) * b
if err != nil {
io.Pfred("solver failed:\n%v", err)
return
}
// output
la.PrintMat("a", A.ToMatrix(nil).ToDense(), "%5g", false)
la.PrintVec("b", b, "%v ", false)
la.PrintVec("x", x, "%v ", false)
}