本文整理匯總了Golang中github.com/cpmech/gosl/la.Triplet.Init方法的典型用法代碼示例。如果您正苦於以下問題:Golang Triplet.Init方法的具體用法?Golang Triplet.Init怎麽用?Golang Triplet.Init使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類github.com/cpmech/gosl/la.Triplet
的用法示例。
在下文中一共展示了Triplet.Init方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: main
func main() {
// input matrix in Triplet format
// including repeated positions. e.g. (0,0)
var A la.Triplet
A.Init(5, 5, 13)
A.Put(0, 0, 1.0) // << repeated
A.Put(0, 0, 1.0) // << repeated
A.Put(1, 0, 3.0)
A.Put(0, 1, 3.0)
A.Put(2, 1, -1.0)
A.Put(4, 1, 4.0)
A.Put(1, 2, 4.0)
A.Put(2, 2, -3.0)
A.Put(3, 2, 1.0)
A.Put(4, 2, 2.0)
A.Put(2, 3, 2.0)
A.Put(1, 4, 6.0)
A.Put(4, 4, 1.0)
// right-hand-side
b := []float64{8.0, 45.0, -3.0, 3.0, 19.0}
// solve
x, err := la.SolveRealLinSys(&A, b)
if err != nil {
io.Pfred("solver failed:\n%v", err)
return
}
// output
la.PrintMat("a", A.ToMatrix(nil).ToDense(), "%5g", false)
la.PrintVec("b", b, "%v ", false)
la.PrintVec("x", x, "%v ", false)
}
示例2: CompareJac
func CompareJac(tst *testing.T, ffcn Cb_f, Jfcn Cb_J, x []float64, tol float64, distr bool) {
n := len(x)
// numerical
fx := make([]float64, n)
w := make([]float64, n) // workspace
ffcn(fx, x)
var Jnum la.Triplet
Jnum.Init(n, n, n*n)
Jacobian(&Jnum, ffcn, x, fx, w, distr)
jn := Jnum.ToMatrix(nil)
// analytical
var Jana la.Triplet
Jana.Init(n, n, n*n)
Jfcn(&Jana, x)
ja := Jana.ToMatrix(nil)
// compare
//la.PrintMat(fmt.Sprintf("Jana(%d)",mpi.Rank()), ja.ToDense(), "%13.6f", false)
//la.PrintMat(fmt.Sprintf("Jnum(%d)",mpi.Rank()), jn.ToDense(), "%13.6f", false)
max_diff := la.MatMaxDiff(jn.ToDense(), ja.ToDense())
if max_diff > tol {
tst.Errorf("[1;31mmax_diff = %g[0m\n", max_diff)
} else {
io.Pf("[1;32mmax_diff = %g[0m\n", max_diff)
}
}
示例3: main
func main() {
// input matrix in Triplet format
// including repeated positions. e.g. (0,0)
var A la.Triplet
A.Init(5, 5, 13)
A.Put(0, 0, 1.0) // << repeated
A.Put(0, 0, 1.0) // << repeated
A.Put(1, 0, 3.0)
A.Put(0, 1, 3.0)
A.Put(2, 1, -1.0)
A.Put(4, 1, 4.0)
A.Put(1, 2, 4.0)
A.Put(2, 2, -3.0)
A.Put(3, 2, 1.0)
A.Put(4, 2, 2.0)
A.Put(2, 3, 2.0)
A.Put(1, 4, 6.0)
A.Put(4, 4, 1.0)
// right-hand-side
b := []float64{8.0, 45.0, -3.0, 3.0, 19.0}
// allocate solver
lis := la.GetSolver("umfpack")
defer lis.Clean()
// info
symmetric := false
verbose := false
timing := false
// initialise solver (R)eal
err := lis.InitR(&A, symmetric, verbose, timing)
if err != nil {
io.Pfred("solver failed:\n%v", err)
return
}
// factorise
err = lis.Fact()
if err != nil {
io.Pfred("solver failed:\n%v", err)
return
}
// solve (R)eal
var dummy bool
x := make([]float64, len(b))
err = lis.SolveR(x, b, dummy) // x := inv(a) * b
if err != nil {
io.Pfred("solver failed:\n%v", err)
return
}
// output
la.PrintMat("a", A.ToMatrix(nil).ToDense(), "%5g", false)
la.PrintVec("b", b, "%v ", false)
la.PrintVec("x", x, "%v ", false)
}
示例4: CompareJacMpi
// CompareJacMpi compares Jacobian matrix (e.g. for testing)
func CompareJacMpi(tst *testing.T, ffcn Cb_f, Jfcn Cb_J, x []float64, tol float64, distr bool) {
// numerical
n := len(x)
fx := make([]float64, n)
w := make([]float64, n) // workspace
ffcn(fx, x)
var Jnum la.Triplet
Jnum.Init(n, n, n*n)
JacobianMpi(&Jnum, ffcn, x, fx, w, distr)
jn := Jnum.ToMatrix(nil)
// analytical
var Jana la.Triplet
Jana.Init(n, n, n*n)
Jfcn(&Jana, x)
ja := Jana.ToMatrix(nil)
// compare
max_diff := la.MatMaxDiff(jn.ToDense(), ja.ToDense())
if max_diff > tol {
tst.Errorf("[1;31mmax_diff = %g[0m\n", max_diff)
} else {
io.Pf("[1;32mmax_diff = %g[0m\n", max_diff)
}
}
示例5: CheckJ
// CheckJ check Jacobian matrix
// Ouptut: cnd -- condition number (with Frobenius norm)
func (o *NlSolver) CheckJ(x []float64, tol float64, chkJnum, silent bool) (cnd float64, err error) {
// Jacobian matrix
var Jmat [][]float64
if o.useDn {
Jmat = la.MatAlloc(o.neq, o.neq)
err = o.JfcnDn(Jmat, x)
if err != nil {
return 0, chk.Err(_nls_err5, "dense", err.Error())
}
} else {
if o.numJ {
err = Jacobian(&o.Jtri, o.Ffcn, x, o.fx, o.w, false)
if err != nil {
return 0, chk.Err(_nls_err5, "sparse", err.Error())
}
} else {
err = o.JfcnSp(&o.Jtri, x)
if err != nil {
return 0, chk.Err(_nls_err5, "sparse(num)", err.Error())
}
}
Jmat = o.Jtri.ToMatrix(nil).ToDense()
}
//la.PrintMat("J", Jmat, "%23g", false)
// condition number
cnd, err = la.MatCondG(Jmat, "F", 1e-10)
if err != nil {
return cnd, chk.Err(_nls_err6, err.Error())
}
if math.IsInf(cnd, 0) || math.IsNaN(cnd) {
return cnd, chk.Err(_nls_err7, cnd)
}
// numerical Jacobian
if !chkJnum {
return
}
var Jtmp la.Triplet
ws := make([]float64, o.neq)
err = o.Ffcn(o.fx, x)
if err != nil {
return
}
Jtmp.Init(o.neq, o.neq, o.neq*o.neq)
Jacobian(&Jtmp, o.Ffcn, x, o.fx, ws, false)
Jnum := Jtmp.ToMatrix(nil).ToDense()
for i := 0; i < o.neq; i++ {
for j := 0; j < o.neq; j++ {
chk.PrintAnaNum(io.Sf("J[%d][%d]", i, j), tol, Jmat[i][j], Jnum[i][j], !silent)
}
}
maxdiff := la.MatMaxDiff(Jmat, Jnum)
if maxdiff > tol {
err = chk.Err(_nls_err8, maxdiff)
}
return
}
示例6: Jacobian
/* Jacobian
========
Calculates (with N=n-1):
df0dx0, df0dx1, df0dx2, ... df0dxN
df1dx0, df1dx1, df1dx2, ... df1dxN
. . . . . . . . . . . . .
dfNdx0, dfNdx1, dfNdx2, ... dfNdxN
INPUT:
ffcn : f(x) function
x : station where dfdx has to be calculated
fx : f @ x
w : workspace with size == n == len(x)
RETURNS:
J : dfdx @ x [must be pre-allocated] */
func Jacobian(J *la.Triplet, ffcn Cb_f, x, fx, w []float64, distr bool) (err error) {
ndim := len(x)
start, endp1 := 0, ndim
if distr {
id, sz := mpi.Rank(), mpi.Size()
start, endp1 = (id*ndim)/sz, ((id+1)*ndim)/sz
if J.Max() == 0 {
J.Init(ndim, ndim, (endp1-start)*ndim)
}
} else {
if J.Max() == 0 {
J.Init(ndim, ndim, ndim*ndim)
}
}
J.Start()
// NOTE: cannot split calculation by columns unless the f function is
// independently calculated by each MPI processor.
// Otherwise, the AllReduce in f calculation would
// join pieces of f from different processors calculated for
// different x values (δx[col] from different columns).
/*
for col := start; col < endp1; col++ {
xsafe := x[col]
delta := math.Sqrt(EPS * max(CTE1, math.Abs(xsafe)))
x[col] = xsafe + delta
ffcn(w, x) // fnew
io.Pforan("x = %v, f = %v\n", x, w)
for row := 0; row < ndim; row++ {
J.Put(row, col, (w[row]-fx[row])/delta)
}
x[col] = xsafe
}
*/
var df float64
for col := 0; col < ndim; col++ {
xsafe := x[col]
delta := math.Sqrt(EPS * max(CTE1, math.Abs(xsafe)))
x[col] = xsafe + delta
err = ffcn(w, x) // w := f(x+δx[col])
if err != nil {
return
}
for row := start; row < endp1; row++ {
df = w[row] - fx[row]
//if math.Abs(df) > EPS {
J.Put(row, col, df/delta)
//}
}
x[col] = xsafe
}
return
}
示例7: main
func main() {
mpi.Start(false)
defer func() {
mpi.Stop(false)
}()
if mpi.Rank() == 0 {
chk.PrintTitle("Test SumToRoot 01")
}
M := [][]float64{
{1000, 1000, 1000, 1011, 1021, 1000},
{1000, 1000, 1000, 1012, 1022, 1000},
{1000, 1000, 1000, 1013, 1023, 1000},
{1011, 1012, 1013, 1000, 1000, 1000},
{1021, 1022, 1023, 1000, 1000, 1000},
{1000, 1000, 1000, 1000, 1000, 1000},
}
id, sz, m := mpi.Rank(), mpi.Size(), len(M)
start, endp1 := (id*m)/sz, ((id+1)*m)/sz
if sz > 6 {
chk.Panic("this test works with at most 6 processors")
}
var J la.Triplet
J.Init(m, m, m*m)
for i := start; i < endp1; i++ {
for j := 0; j < m; j++ {
J.Put(i, j, M[i][j])
}
}
la.PrintMat(fmt.Sprintf("J @ proc # %d", id), J.ToMatrix(nil).ToDense(), "%10.1f", false)
la.SpTriSumToRoot(&J)
var tst testing.T
if mpi.Rank() == 0 {
chk.Matrix(&tst, "J @ proc 0", 1.0e-17, J.ToMatrix(nil).ToDense(), [][]float64{
{1000, 1000, 1000, 1011, 1021, 1000},
{1000, 1000, 1000, 1012, 1022, 1000},
{1000, 1000, 1000, 1013, 1023, 1000},
{1011, 1012, 1013, 1000, 1000, 1000},
{1021, 1022, 1023, 1000, 1000, 1000},
{1000, 1000, 1000, 1000, 1000, 1000},
})
}
}
示例8: main
func main() {
mpi.Start(false)
defer func() {
mpi.Stop(false)
}()
myrank := mpi.Rank()
if myrank == 0 {
chk.PrintTitle("Test MUMPS Sol 02")
}
ndim := 10
id, sz := mpi.Rank(), mpi.Size()
start, endp1 := (id*ndim)/sz, ((id+1)*ndim)/sz
if mpi.Size() > ndim {
chk.Panic("the number of processors must be smaller than or equal to %d", ndim)
}
b := make([]float64, ndim)
var t la.Triplet
t.Init(ndim, ndim, ndim*ndim)
for i := start; i < endp1; i++ {
j := i
if i > 0 {
j = i - 1
}
for ; j < ndim; j++ {
val := 10.0 - float64(j)
if i > j {
val -= 1.0
}
t.Put(i, j, val)
}
b[i] = float64(i + 1)
}
x_correct := []float64{-1, 8, -65, 454, -2725, 13624, -54497, 163490, -326981, 326991}
sum_b_to_root := true
la.RunMumpsTestR(&t, 1e-4, b, x_correct, sum_b_to_root)
}
示例9: main
func main() {
mpi.Start(false)
defer func() {
mpi.Stop(false)
}()
myrank := mpi.Rank()
if myrank == 0 {
chk.PrintTitle("Test MUMPS Sol 01a")
}
var t la.Triplet
switch mpi.Size() {
case 1:
t.Init(5, 5, 13)
t.Put(0, 0, 1.0)
t.Put(0, 0, 1.0)
t.Put(1, 0, 3.0)
t.Put(0, 1, 3.0)
t.Put(2, 1, -1.0)
t.Put(4, 1, 4.0)
t.Put(1, 2, 4.0)
t.Put(2, 2, -3.0)
t.Put(3, 2, 1.0)
t.Put(4, 2, 2.0)
t.Put(2, 3, 2.0)
t.Put(1, 4, 6.0)
t.Put(4, 4, 1.0)
case 2:
if myrank == 0 {
t.Init(5, 5, 6)
t.Put(0, 0, 1.0)
t.Put(0, 0, 1.0)
t.Put(1, 0, 3.0)
t.Put(0, 1, 3.0)
t.Put(2, 1, -1.0)
t.Put(4, 1, 4.0)
} else {
t.Init(5, 5, 7)
t.Put(1, 2, 4.0)
t.Put(2, 2, -3.0)
t.Put(3, 2, 1.0)
t.Put(4, 2, 2.0)
t.Put(2, 3, 2.0)
t.Put(1, 4, 6.0)
t.Put(4, 4, 1.0)
}
default:
chk.Panic("this test needs 1 or 2 procs")
}
b := []float64{8.0, 45.0, -3.0, 3.0, 19.0}
x_correct := []float64{1, 2, 3, 4, 5}
sum_b_to_root := false
la.RunMumpsTestR(&t, 1e-14, b, x_correct, sum_b_to_root)
}
示例10: Jacobian
// Jacobian computes Jacobian (sparse) matrix
// Calculates (with N=n-1):
// df0dx0, df0dx1, df0dx2, ... df0dxN
// df1dx0, df1dx1, df1dx2, ... df1dxN
// . . . . . . . . . . . . .
// dfNdx0, dfNdx1, dfNdx2, ... dfNdxN
// INPUT:
// ffcn : f(x) function
// x : station where dfdx has to be calculated
// fx : f @ x
// w : workspace with size == n == len(x)
// RETURNS:
// J : dfdx @ x [must be pre-allocated]
func Jacobian(J *la.Triplet, ffcn Cb_f, x, fx, w []float64) (err error) {
ndim := len(x)
start, endp1 := 0, ndim
if J.Max() == 0 {
J.Init(ndim, ndim, ndim*ndim)
}
J.Start()
var df float64
for col := 0; col < ndim; col++ {
xsafe := x[col]
delta := math.Sqrt(EPS * max(CTE1, math.Abs(xsafe)))
x[col] = xsafe + delta
err = ffcn(w, x) // w := f(x+δx[col])
if err != nil {
return
}
for row := start; row < endp1; row++ {
df = w[row] - fx[row]
J.Put(row, col, df/delta)
}
x[col] = xsafe
}
return
}
示例11: InitK11andK12
func InitK11andK12(K11, K12 *la.Triplet, e *Equations) {
K11.Init(e.N1, e.N1, e.N1*5)
K12.Init(e.N1, e.N2, e.N1*5)
}
示例12: main
func main() {
mpi.Start(false)
defer func() {
mpi.Stop(false)
}()
if mpi.Rank() == 0 {
chk.PrintTitle("Test ODE 04b (MPI)")
io.Pfcyan("Hairer-Wanner VII-p376 Transistor Amplifier (MPI)\n")
io.Pfcyan("(from E Hairer's website, not the system in the book)\n")
}
if mpi.Size() != 3 {
chk.Panic(">> error: this test requires 3 MPI processors\n")
return
}
// RIGHT-HAND SIDE OF THE AMPLIFIER PROBLEM
w := make([]float64, 8) // workspace
fcn := func(f []float64, x float64, y []float64, args ...interface{}) error {
d := args[0].(*HWtransData)
UET := d.UE * math.Sin(d.W*x)
FAC1 := d.BETA * (math.Exp((y[3]-y[2])/d.UF) - 1.0)
FAC2 := d.BETA * (math.Exp((y[6]-y[5])/d.UF) - 1.0)
la.VecFill(f, 0)
switch mpi.Rank() {
case 0:
f[0] = y[0] / d.R9
case 1:
f[1] = (y[1]-d.UB)/d.R8 + d.ALPHA*FAC1
f[2] = y[2]/d.R7 - FAC1
case 2:
f[3] = y[3]/d.R5 + (y[3]-d.UB)/d.R6 + (1.0-d.ALPHA)*FAC1
f[4] = (y[4]-d.UB)/d.R4 + d.ALPHA*FAC2
f[5] = y[5]/d.R3 - FAC2
f[6] = y[6]/d.R1 + (y[6]-d.UB)/d.R2 + (1.0-d.ALPHA)*FAC2
f[7] = (y[7] - UET) / d.R0
}
mpi.AllReduceSum(f, w)
return nil
}
// JACOBIAN OF THE AMPLIFIER PROBLEM
jac := func(dfdy *la.Triplet, x float64, y []float64, args ...interface{}) error {
d := args[0].(*HWtransData)
FAC14 := d.BETA * math.Exp((y[3]-y[2])/d.UF) / d.UF
FAC27 := d.BETA * math.Exp((y[6]-y[5])/d.UF) / d.UF
if dfdy.Max() == 0 {
dfdy.Init(8, 8, 16)
}
NU := 2
dfdy.Start()
switch mpi.Rank() {
case 0:
dfdy.Put(2+0-NU, 0, 1.0/d.R9)
dfdy.Put(2+1-NU, 1, 1.0/d.R8)
dfdy.Put(1+2-NU, 2, -d.ALPHA*FAC14)
dfdy.Put(0+3-NU, 3, d.ALPHA*FAC14)
dfdy.Put(2+2-NU, 2, 1.0/d.R7+FAC14)
case 1:
dfdy.Put(1+3-NU, 3, -FAC14)
dfdy.Put(2+3-NU, 3, 1.0/d.R5+1.0/d.R6+(1.0-d.ALPHA)*FAC14)
dfdy.Put(3+2-NU, 2, -(1.0-d.ALPHA)*FAC14)
dfdy.Put(2+4-NU, 4, 1.0/d.R4)
dfdy.Put(1+5-NU, 5, -d.ALPHA*FAC27)
case 2:
dfdy.Put(0+6-NU, 6, d.ALPHA*FAC27)
dfdy.Put(2+5-NU, 5, 1.0/d.R3+FAC27)
dfdy.Put(1+6-NU, 6, -FAC27)
dfdy.Put(2+6-NU, 6, 1.0/d.R1+1.0/d.R2+(1.0-d.ALPHA)*FAC27)
dfdy.Put(3+5-NU, 5, -(1.0-d.ALPHA)*FAC27)
dfdy.Put(2+7-NU, 7, 1.0/d.R0)
}
return nil
}
// MATRIX "M"
c1, c2, c3, c4, c5 := 1.0e-6, 2.0e-6, 3.0e-6, 4.0e-6, 5.0e-6
var M la.Triplet
M.Init(8, 8, 14)
M.Start()
NU := 1
switch mpi.Rank() {
case 0:
M.Put(1+0-NU, 0, -c5)
M.Put(0+1-NU, 1, c5)
M.Put(2+0-NU, 0, c5)
M.Put(1+1-NU, 1, -c5)
M.Put(1+2-NU, 2, -c4)
M.Put(1+3-NU, 3, -c3)
case 1:
M.Put(0+4-NU, 4, c3)
M.Put(2+3-NU, 3, c3)
M.Put(1+4-NU, 4, -c3)
case 2:
M.Put(1+5-NU, 5, -c2)
M.Put(1+6-NU, 6, -c1)
M.Put(0+7-NU, 7, c1)
M.Put(2+6-NU, 6, c1)
M.Put(1+7-NU, 7, -c1)
//.........這裏部分代碼省略.........
示例13: Test_linipm02
func Test_linipm02(tst *testing.T) {
//verbose()
chk.PrintTitle("linipm02")
// linear program
// min 2*x0 + x1
// s.t. -x0 + x1 ≤ 1
// x0 + x1 ≥ 2 → -x0 - x1 ≤ -2
// x0 - 2*x1 ≤ 4
// x1 ≥ 0
// standard (step 1) add slack
// s.t. -x0 + x1 + x2 = 1
// -x0 - x1 + x3 = -2
// x0 - 2*x1 + x4 = 4
// standard (step 2)
// replace x0 := x0_ - x5
// because it's unbounded
// min 2*x0_ + x1 - 2*x5
// s.t. -x0_ + x1 + x2 + x5 = 1
// -x0_ - x1 + x3 + x5 = -2
// x0_ - 2*x1 + x4 - x5 = 4
// x0_,x1,x2,x3,x4,x5 ≥ 0
var T la.Triplet
T.Init(3, 6, 12)
T.Put(0, 0, -1)
T.Put(0, 1, 1)
T.Put(0, 2, 1)
T.Put(0, 5, 1)
T.Put(1, 0, -1)
T.Put(1, 1, -1)
T.Put(1, 3, 1)
T.Put(1, 5, 1)
T.Put(2, 0, 1)
T.Put(2, 1, -2)
T.Put(2, 4, 1)
T.Put(2, 5, -1)
Am := T.ToMatrix(nil)
A := Am.ToDense()
c := []float64{2, 1, 0, 0, 0, -2}
b := []float64{1, -2, 4}
// print LP
la.PrintMat("A", A, "%6g", false)
la.PrintVec("b", b, "%6g", false)
la.PrintVec("c", c, "%6g", false)
io.Pf("\n")
// solve LP
var ipm LinIpm
defer ipm.Clean()
ipm.Init(Am, b, c, nil)
err := ipm.Solve(chk.Verbose)
if err != nil {
tst.Errorf("ipm failed:\n%v", err)
return
}
// check
io.Pf("\n")
bres := make([]float64, len(b))
la.MatVecMul(bres, 1, A, ipm.X)
io.Pforan("bres = %v\n", bres)
chk.Vector(tst, "A*x=b", 1e-8, bres, b)
// fix and check x
x := ipm.X[:2]
x[0] -= ipm.X[5]
io.Pforan("x = %v\n", x)
chk.Vector(tst, "x", 1e-8, x, []float64{0.5, 1.5})
// plot
if true && chk.Verbose {
f := func(x []float64) float64 {
return c[0]*x[0] + c[1]*x[1]
}
g := func(x []float64, i int) float64 {
return A[i][0]*x[0] + A[i][1]*x[1] - b[i]
}
np := 41
vmin, vmax := []float64{-2.0, -2.0}, []float64{2.0, 2.0}
PlotTwoVarsContour("/tmp/gosl", "test_linipm02", x, np, nil, true, vmin, vmax, f,
func(x []float64) float64 { return g(x, 0) },
func(x []float64) float64 { return g(x, 1) },
)
}
}
示例14: main
func main() {
mpi.Start(false)
defer func() {
mpi.Stop(false)
}()
myrank := mpi.Rank()
if myrank == 0 {
chk.PrintTitle("Test MUMPS Sol 01b")
}
var t la.Triplet
b := []float64{8.0, 45.0, -3.0, 3.0, 19.0}
switch mpi.Size() {
case 1:
t.Init(5, 5, 13)
t.Put(0, 0, 1.0)
t.Put(0, 0, 1.0)
t.Put(1, 0, 3.0)
t.Put(0, 1, 3.0)
t.Put(2, 1, -1.0)
t.Put(4, 1, 4.0)
t.Put(1, 2, 4.0)
t.Put(2, 2, -3.0)
t.Put(3, 2, 1.0)
t.Put(4, 2, 2.0)
t.Put(2, 3, 2.0)
t.Put(1, 4, 6.0)
t.Put(4, 4, 1.0)
case 2:
la.VecFill(b, 0)
if myrank == 0 {
t.Init(5, 5, 8)
t.Put(0, 0, 1.0)
t.Put(0, 0, 1.0)
t.Put(1, 0, 3.0)
t.Put(0, 1, 3.0)
t.Put(2, 1, -1.0)
t.Put(4, 1, 1.0)
t.Put(4, 1, 1.5)
t.Put(4, 1, 1.5)
b[0] = 8.0
b[1] = 40.0
b[2] = 1.5
} else {
t.Init(5, 5, 8)
t.Put(1, 2, 4.0)
t.Put(2, 2, -3.0)
t.Put(3, 2, 1.0)
t.Put(4, 2, 2.0)
t.Put(2, 3, 2.0)
t.Put(1, 4, 6.0)
t.Put(4, 4, 0.5)
t.Put(4, 4, 0.5)
b[1] = 5.0
b[2] = -4.5
b[3] = 3.0
b[4] = 19.0
}
default:
chk.Panic("this test needs 1 or 2 procs")
}
x_correct := []float64{1, 2, 3, 4, 5}
sum_b_to_root := true
la.RunMumpsTestR(&t, 1e-14, b, x_correct, sum_b_to_root)
}
示例15: main
func main() {
mpi.Start(false)
defer func() {
mpi.Stop(false)
}()
if mpi.Rank() == 0 {
chk.PrintTitle("ode04: Hairer-Wanner VII-p376 Transistor Amplifier\n")
}
if mpi.Size() != 3 {
chk.Panic(">> error: this test requires 3 MPI processors\n")
return
}
// data
UE, UB, UF, ALPHA, BETA := 0.1, 6.0, 0.026, 0.99, 1.0e-6
R0, R1, R2, R3, R4, R5 := 1000.0, 9000.0, 9000.0, 9000.0, 9000.0, 9000.0
R6, R7, R8, R9 := 9000.0, 9000.0, 9000.0, 9000.0
W := 2.0 * 3.141592654 * 100.0
// initial values
xa := 0.0
ya := []float64{0.0,
UB,
UB / (R6/R5 + 1.0),
UB / (R6/R5 + 1.0),
UB,
UB / (R2/R1 + 1.0),
UB / (R2/R1 + 1.0),
0.0}
// endpoint of integration
xb := 0.05
//xb = 0.0123 // OK
//xb = 0.01235 // !OK
// right-hand side of the amplifier problem
w := make([]float64, 8) // workspace
fcn := func(f []float64, dx, x float64, y []float64, args ...interface{}) error {
UET := UE * math.Sin(W*x)
FAC1 := BETA * (math.Exp((y[3]-y[2])/UF) - 1.0)
FAC2 := BETA * (math.Exp((y[6]-y[5])/UF) - 1.0)
la.VecFill(f, 0)
switch mpi.Rank() {
case 0:
f[0] = y[0] / R9
case 1:
f[1] = (y[1]-UB)/R8 + ALPHA*FAC1
f[2] = y[2]/R7 - FAC1
case 2:
f[3] = y[3]/R5 + (y[3]-UB)/R6 + (1.0-ALPHA)*FAC1
f[4] = (y[4]-UB)/R4 + ALPHA*FAC2
f[5] = y[5]/R3 - FAC2
f[6] = y[6]/R1 + (y[6]-UB)/R2 + (1.0-ALPHA)*FAC2
f[7] = (y[7] - UET) / R0
}
mpi.AllReduceSum(f, w)
return nil
}
// Jacobian of the amplifier problem
jac := func(dfdy *la.Triplet, dx, x float64, y []float64, args ...interface{}) error {
FAC14 := BETA * math.Exp((y[3]-y[2])/UF) / UF
FAC27 := BETA * math.Exp((y[6]-y[5])/UF) / UF
if dfdy.Max() == 0 {
dfdy.Init(8, 8, 16)
}
NU := 2
dfdy.Start()
switch mpi.Rank() {
case 0:
dfdy.Put(2+0-NU, 0, 1.0/R9)
dfdy.Put(2+1-NU, 1, 1.0/R8)
dfdy.Put(1+2-NU, 2, -ALPHA*FAC14)
dfdy.Put(0+3-NU, 3, ALPHA*FAC14)
dfdy.Put(2+2-NU, 2, 1.0/R7+FAC14)
case 1:
dfdy.Put(1+3-NU, 3, -FAC14)
dfdy.Put(2+3-NU, 3, 1.0/R5+1.0/R6+(1.0-ALPHA)*FAC14)
dfdy.Put(3+2-NU, 2, -(1.0-ALPHA)*FAC14)
dfdy.Put(2+4-NU, 4, 1.0/R4)
dfdy.Put(1+5-NU, 5, -ALPHA*FAC27)
case 2:
dfdy.Put(0+6-NU, 6, ALPHA*FAC27)
dfdy.Put(2+5-NU, 5, 1.0/R3+FAC27)
dfdy.Put(1+6-NU, 6, -FAC27)
dfdy.Put(2+6-NU, 6, 1.0/R1+1.0/R2+(1.0-ALPHA)*FAC27)
dfdy.Put(3+5-NU, 5, -(1.0-ALPHA)*FAC27)
dfdy.Put(2+7-NU, 7, 1.0/R0)
}
return nil
}
// matrix "M"
c1, c2, c3, c4, c5 := 1.0e-6, 2.0e-6, 3.0e-6, 4.0e-6, 5.0e-6
var M la.Triplet
M.Init(8, 8, 14)
M.Start()
NU := 1
//.........這裏部分代碼省略.........