本文整理匯總了C#中System.Math.Cos方法的典型用法代碼示例。如果您正苦於以下問題:C# Math.Cos方法的具體用法?C# Math.Cos怎麽用?C# Math.Cos使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類System.Math
的用法示例。
在下文中一共展示了Math.Cos方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: Main
// Example for the trigonometric Math.Sin( double )
// and Math.Cos( double ) methods.
using System;
class SinCos
{
public static void Main()
{
Console.WriteLine(
"This example of trigonometric " +
"Math.Sin( double ) and Math.Cos( double )\n" +
"generates the following output.\n" );
Console.WriteLine(
"Convert selected values for X to radians \n" +
"and evaluate these trigonometric identities:" );
Console.WriteLine( " sin^2(X) + cos^2(X) == 1\n" +
" sin(2 * X) == 2 * sin(X) * cos(X)" );
Console.WriteLine( " cos(2 * X) == cos^2(X) - sin^2(X)" );
UseSineCosine(15.0);
UseSineCosine(30.0);
UseSineCosine(45.0);
Console.WriteLine(
"\nConvert selected values for X and Y to radians \n" +
"and evaluate these trigonometric identities:" );
Console.WriteLine( " sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y)" );
Console.WriteLine( " cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y)" );
UseTwoAngles(15.0, 30.0);
UseTwoAngles(30.0, 45.0);
}
// Evaluate trigonometric identities with a given angle.
static void UseSineCosine(double degrees)
{
double angle = Math.PI * degrees / 180.0;
double sinAngle = Math.Sin(angle);
double cosAngle = Math.Cos(angle);
// Evaluate sin^2(X) + cos^2(X) == 1.
Console.WriteLine(
"\n Math.Sin({0} deg) == {1:E16}\n" +
" Math.Cos({0} deg) == {2:E16}",
degrees, Math.Sin(angle), Math.Cos(angle) );
Console.WriteLine(
"(Math.Sin({0} deg))^2 + (Math.Cos({0} deg))^2 == {1:E16}",
degrees, sinAngle * sinAngle + cosAngle * cosAngle );
// Evaluate sin(2 * X) == 2 * sin(X) * cos(X).
Console.WriteLine(
" Math.Sin({0} deg) == {1:E16}",
2.0 * degrees, Math.Sin(2.0 * angle) );
Console.WriteLine(
" 2 * Math.Sin({0} deg) * Math.Cos({0} deg) == {1:E16}",
degrees, 2.0 * sinAngle * cosAngle );
// Evaluate cos(2 * X) == cos^2(X) - sin^2(X).
Console.WriteLine(
" Math.Cos({0} deg) == {1:E16}",
2.0 * degrees, Math.Cos(2.0 * angle) );
Console.WriteLine(
"(Math.Cos({0} deg))^2 - (Math.Sin({0} deg))^2 == {1:E16}",
degrees, cosAngle * cosAngle - sinAngle * sinAngle );
}
// Evaluate trigonometric identities that are functions of two angles.
static void UseTwoAngles(double degreesX, double degreesY)
{
double angleX = Math.PI * degreesX / 180.0;
double angleY = Math.PI * degreesY / 180.0;
// Evaluate sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y).
Console.WriteLine(
"\n Math.Sin({0} deg) * Math.Cos({1} deg) +\n" +
" Math.Cos({0} deg) * Math.Sin({1} deg) == {2:E16}",
degreesX, degreesY, Math.Sin(angleX) * Math.Cos(angleY) +
Math.Cos(angleX) * Math.Sin(angleY));
Console.WriteLine(
" Math.Sin({0} deg) == {1:E16}",
degreesX + degreesY, Math.Sin(angleX + angleY));
// Evaluate cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y).
Console.WriteLine(
" Math.Cos({0} deg) * Math.Cos({1} deg) -\n" +
" Math.Sin({0} deg) * Math.Sin({1} deg) == {2:E16}",
degreesX, degreesY, Math.Cos(angleX) * Math.Cos(angleY) -
Math.Sin(angleX) * Math.Sin(angleY));
Console.WriteLine(
" Math.Cos({0} deg) == {1:E16}",
degreesX + degreesY, Math.Cos(angleX + angleY));
}
}
輸出:
Convert selected values for X to radians and evaluate these trigonometric identities: sin^2(X) + cos^2(X) == 1 sin(2 * X) == 2 * sin(X) * cos(X) cos(2 * X) == cos^2(X) - sin^2(X) Math.Sin(15 deg) == 2.5881904510252074E-001 Math.Cos(15 deg) == 9.6592582628906831E-001 (Math.Sin(15 deg))^2 + (Math.Cos(15 deg))^2 == 1.0000000000000000E+000 Math.Sin(30 deg) == 4.9999999999999994E-001 2 * Math.Sin(15 deg) * Math.Cos(15 deg) == 4.9999999999999994E-001 Math.Cos(30 deg) == 8.6602540378443871E-001 (Math.Cos(15 deg))^2 - (Math.Sin(15 deg))^2 == 8.6602540378443871E-001 Math.Sin(30 deg) == 4.9999999999999994E-001 Math.Cos(30 deg) == 8.6602540378443871E-001 (Math.Sin(30 deg))^2 + (Math.Cos(30 deg))^2 == 1.0000000000000000E+000 Math.Sin(60 deg) == 8.6602540378443860E-001 2 * Math.Sin(30 deg) * Math.Cos(30 deg) == 8.6602540378443860E-001 Math.Cos(60 deg) == 5.0000000000000011E-001 (Math.Cos(30 deg))^2 - (Math.Sin(30 deg))^2 == 5.0000000000000022E-001 Math.Sin(45 deg) == 7.0710678118654746E-001 Math.Cos(45 deg) == 7.0710678118654757E-001 (Math.Sin(45 deg))^2 + (Math.Cos(45 deg))^2 == 1.0000000000000000E+000 Math.Sin(90 deg) == 1.0000000000000000E+000 2 * Math.Sin(45 deg) * Math.Cos(45 deg) == 1.0000000000000000E+000 Math.Cos(90 deg) == 6.1230317691118863E-017 (Math.Cos(45 deg))^2 - (Math.Sin(45 deg))^2 == 2.2204460492503131E-016 Convert selected values for X and Y to radians and evaluate these trigonometric identities: sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y) cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y) Math.Sin(15 deg) * Math.Cos(30 deg) + Math.Cos(15 deg) * Math.Sin(30 deg) == 7.0710678118654746E-001 Math.Sin(45 deg) == 7.0710678118654746E-001 Math.Cos(15 deg) * Math.Cos(30 deg) - Math.Sin(15 deg) * Math.Sin(30 deg) == 7.0710678118654757E-001 Math.Cos(45 deg) == 7.0710678118654757E-001 Math.Sin(30 deg) * Math.Cos(45 deg) + Math.Cos(30 deg) * Math.Sin(45 deg) == 9.6592582628906831E-001 Math.Sin(75 deg) == 9.6592582628906820E-001 Math.Cos(30 deg) * Math.Cos(45 deg) - Math.Sin(30 deg) * Math.Sin(45 deg) == 2.5881904510252085E-001 Math.Cos(75 deg) == 2.5881904510252096E-001
示例2: Math.Cos()
//引入命名空間
using System;
public class Trigonometry {
public static void Main() {
Double theta;
for(theta = 0.1; theta <= 1.0; theta = theta + 0.1) {
Console.WriteLine("Sine of " + theta + " is " +
Math.Sin(theta));
Console.WriteLine("Cosine of " + theta + " is " +
Math.Cos(theta));
Console.WriteLine("Tangent of " + theta + " is " +
Math.Tan(theta));
Console.WriteLine();
}
}
}