本文整理匯總了C#中System.Math.E字段的典型用法代碼示例。如果您正苦於以下問題:C# Math.E字段的具體用法?C# Math.E怎麽用?C# Math.E使用的例子?那麽, 這裏精選的字段代碼示例或許可以為您提供幫助。您也可以進一步了解該字段所在類System.Math
的用法示例。
在下文中一共展示了Math.E字段的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: Main
// Example for the Math.E field.
using System;
class EField
{
public static void Main()
{
Console.WriteLine(
"This example of Math.E == {0:E16}\n" +
"generates the following output.\n",
Math.E );
Console.WriteLine(
"Define the power series PS(n) = Sum(k->0,n)[1/k!]" );
Console.WriteLine( " (limit n->infinity)PS(n) == e" );
Console.WriteLine(
"Display PS(n) and Math.E - PS(n), " +
"and stop when delta < 1.0E-15\n" );
CalcPowerSeries();
}
// Approximate E with a power series.
static void CalcPowerSeries()
{
double factorial = 1.0;
double PS = 0.0;
// Stop iterating when the series converges,
// and prevent a runaway process.
for( int n = 0; n < 999 && Math.Abs( Math.E - PS ) > 1.0E-15; n++ )
{
// Calculate a running factorial.
if( n > 0 )
factorial *= (double)n;
// Calculate and display the power series.
PS += 1.0 / factorial;
Console.WriteLine(
"PS({0:D2}) == {1:E16}, Math.E - PS({0:D2}) == {2:E16}",
n, PS, Math.E - PS );
}
}
}
輸出:
Define the power series PS(n) = Sum(k->0,n)[1/k!] (limit n->infinity)PS(n) == e Display PS(n) and Math.E - PS(n), and stop when delta < 1.0E-15 PS(00) == 1.0000000000000000E+000, Math.E - PS(00) == 1.7182818284590451E+000 PS(01) == 2.0000000000000000E+000, Math.E - PS(01) == 7.1828182845904509E-001 PS(02) == 2.5000000000000000E+000, Math.E - PS(02) == 2.1828182845904509E-001 PS(03) == 2.6666666666666665E+000, Math.E - PS(03) == 5.1615161792378572E-002 PS(04) == 2.7083333333333330E+000, Math.E - PS(04) == 9.9484951257120535E-003 PS(05) == 2.7166666666666663E+000, Math.E - PS(05) == 1.6151617923787498E-003 PS(06) == 2.7180555555555554E+000, Math.E - PS(06) == 2.2627290348964380E-004 PS(07) == 2.7182539682539684E+000, Math.E - PS(07) == 2.7860205076724043E-005 PS(08) == 2.7182787698412700E+000, Math.E - PS(08) == 3.0586177750535626E-006 PS(09) == 2.7182815255731922E+000, Math.E - PS(09) == 3.0288585284310443E-007 PS(10) == 2.7182818011463845E+000, Math.E - PS(10) == 2.7312660577649694E-008 PS(11) == 2.7182818261984929E+000, Math.E - PS(11) == 2.2605521898810821E-009 PS(12) == 2.7182818282861687E+000, Math.E - PS(12) == 1.7287637987806193E-010 PS(13) == 2.7182818284467594E+000, Math.E - PS(13) == 1.2285727990501982E-011 PS(14) == 2.7182818284582302E+000, Math.E - PS(14) == 8.1490370007486490E-013 PS(15) == 2.7182818284589949E+000, Math.E - PS(15) == 5.0182080713057076E-014 PS(16) == 2.7182818284590429E+000, Math.E - PS(16) == 2.2204460492503131E-015 PS(17) == 2.7182818284590455E+000, Math.E - PS(17) == -4.4408920985006262E-016