本文整理匯總了C#中System.Single.GetLength方法的典型用法代碼示例。如果您正苦於以下問題:C# Single.GetLength方法的具體用法?C# Single.GetLength怎麽用?C# Single.GetLength使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類System.Single
的用法示例。
在下文中一共展示了Single.GetLength方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: IsEqual
public static bool IsEqual(this Int16[][] a, Single[][] b, Single atol = 0, Double rtol = 0)
{
if (a == null && b == null)
return true;
if (a == null ^ b == null)
return false;
int[] la = a.GetLength(true);
int[] lb = b.GetLength(true);
if (la.Length != lb.Length)
return false;
for (int i = 0; i < la.Length; i++)
if (la[i] != lb[i])
return false;
if (rtol > 0)
{
for (int i = 0; i < a.Length; i++)
for (int j = 0; j < a[i].Length; j++)
{
var A = a[i][j];
var B = b[i][j];
if (A == B)
continue;
if (Single.IsNaN(B))
return false;
if (Single.IsInfinity(B))
return false;
var C = A;
var D = B;
var delta = Math.Abs(C - D);
if (C == 0)
{
if (delta <= rtol)
continue;
}
else if (D == 0)
{
if (delta <= rtol)
continue;
}
if (delta <= Math.Abs(C) * rtol)
continue;
return false;
}
}
else if (atol > 0)
{
for (int i = 0; i < a.Length; i++)
for (int j = 0; j < a[i].Length; j++)
{
var A = a[i][j];
var B = b[i][j];
if (A == B)
continue;
if (Single.IsNaN(B))
return false;
if (Single.IsInfinity(B))
return false;
var C = A;
var D = B;
if (Math.Abs(C - D) <= atol)
continue;
return false;
}
}
else
{
for (int i = 0; i < a.Length; i++)
for (int j = 0; j < a[i].Length; j++)
{
var A = a[i][j];
var B = b[i][j];
if (Single.IsNaN(B))
return false;
if (Single.IsInfinity(B))
return false;
if (A != B)
return false;
}
}
return true;
}
示例2: EigenvalueDecompositionF
/// <summary>
/// Construct an eigenvalue decomposition.</summary>
/// <param name="value">
/// The matrix to be decomposed.</param>
/// <param name="assumeSymmetric">
/// Defines if the matrix should be assumed as being symmetric
/// regardless if it is or not. Default is <see langword="false"/>.</param>
/// <param name="inPlace">
/// Pass <see langword="true"/> to perform the decomposition in place. The matrix
/// <paramref name="value"/> will be destroyed in the process, resulting in less
/// memory comsumption.</param>
public EigenvalueDecompositionF(Single[,] value, bool assumeSymmetric, bool inPlace)
{
if (value == null)
{
throw new ArgumentNullException("value", "Matrix cannot be null.");
}
if (value.GetLength(0) != value.GetLength(1))
{
throw new ArgumentException("Matrix is not a square matrix.", "value");
}
n = value.GetLength(1);
V = new Single[n, n];
d = new Single[n];
e = new Single[n];
this.symmetric = assumeSymmetric;
if (this.symmetric)
{
V = inPlace ? value : (Single[,])value.Clone();
// Tridiagonalize.
this.tred2();
// Diagonalize.
this.tql2();
}
else
{
H = inPlace ? value : (Single[,])value.Clone();
ort = new Single[n];
// Reduce to Hessenberg form.
this.orthes();
// Reduce Hessenberg to real Schur form.
this.hqr2();
}
}
示例3: WriteDistance
private void WriteDistance(Single[,] result, string path)
{
var p_size = result.GetLength(0);
var d_size = result.GetLength(1);
using (var writer = new StreamWriter(path))
{
writer.WriteLine("{");
for (var p = 0; p < p_size; p++)
{
writer.Write("{{{0:0}", result[p, 0]);
for (var d = 1; d < d_size; d++)
{
writer.Write(",{0:0}", result[p, d]);
}
writer.WriteLine("},");
}
writer.WriteLine("};");
}
}
示例4: EigenvalueDecompositionF
/// <summary>
/// Construct an eigenvalue decomposition.</summary>
///
/// <param name="value">
/// The matrix to be decomposed.</param>
/// <param name="assumeSymmetric">
/// Defines if the matrix should be assumed as being symmetric
/// regardless if it is or not. Default is <see langword="false"/>.</param>
/// <param name="inPlace">
/// Pass <see langword="true"/> to perform the decomposition in place. The matrix
/// <paramref name="value"/> will be destroyed in the process, resulting in less
/// memory comsumption.</param>
/// <param name="sort">
/// Pass <see langword="true"/> to sort the eigenvalues and eigenvectors at the end
/// of the decomposition.</param>
///
public EigenvalueDecompositionF(Single[,] value, bool assumeSymmetric,
bool inPlace = false, bool sort = false)
{
if (value == null)
throw new ArgumentNullException("value", "Matrix cannot be null.");
if (value.GetLength(0) != value.GetLength(1))
throw new ArgumentException("Matrix is not a square matrix.", "value");
n = value.GetLength(1);
V = new Single[n, n];
d = new Single[n];
e = new Single[n];
this.symmetric = assumeSymmetric;
if (this.symmetric)
{
V = inPlace ? value : (Single[,])value.Clone();
// Tridiagonalize.
this.tred2();
// Diagonalize.
this.tql2();
}
else
{
H = inPlace ? value : (Single[,])value.Clone();
ort = new Single[n];
// Reduce to Hessenberg form.
this.orthes();
// Reduce Hessenberg to real Schur form.
this.hqr2();
}
if (sort)
{
// Sort eigenvalues and vectors in descending order
var idx = Vector.Range(n);
Array.Sort(idx, (i, j) =>
{
if (Math.Abs(d[i]) == Math.Abs(d[j]))
return -Math.Abs(e[i]).CompareTo(Math.Abs(e[j]));
return -Math.Abs(d[i]).CompareTo(Math.Abs(d[j]));
});
this.d = this.d.Get(idx);
this.e = this.e.Get(idx);
this.V = this.V.Get(null, idx);
}
}
示例5: TransformPlaneEquationToWorld
public Int32 TransformPlaneEquationToWorld(Single[,] pPlaneEq, Single[] pose)
{
Int32 maxPlaneNumber = pPlaneEq.GetLength(0);
return TransformPlaneEquationToWorld(maxPlaneNumber, pPlaneEq, pose);
}